results / README.md
zijuncheng's picture
update model card README.md
ae13e33
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
datasets:
  - imdb
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: results
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: imdb
          type: imdb
          config: plain_text
          split: test
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9133333333333333
          - name: F1
            type: f1
            value: 0.9161290322580645
          - name: Precision
            type: precision
            value: 0.8875
          - name: Recall
            type: recall
            value: 0.9466666666666667

results

This model is a fine-tuned version of roberta-base on the imdb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2250
  • Accuracy: 0.9133
  • F1: 0.9161
  • Precision: 0.8875
  • Recall: 0.9467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6922 0.98 46 0.6867 0.7433 0.6778 0.9101 0.54
0.2634 1.98 93 0.3428 0.8833 0.8736 0.9528 0.8067
0.1736 2.94 138 0.2250 0.9133 0.9161 0.8875 0.9467

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.3