CoLVA

[馃搨 GitHub] [馃摐 Paper]

Introduction

As an initial effort to address the systematic shortcomings of matching capabilities in recent multimodal LLMs (MLLMs), we release CoLVA, a novel contrastive MLLM with two novel technical designs: fine-grained vision expert with object-level contrastive learning and instruction augmentation strategy. This repository holds the model weights and inference codes of CoLVA that is built on InternVL2-4B.

Quik Start

We provide an example code to run CoLVA using transformers.

Please use transformers>=4.47.0 to ensure the model works normally.

Model Loading

16-bit (bf16 / fp16)

import torch
from transformers import AutoTokenizer, AutoModel
path = "zhouyik/colva_internvl2_4b"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()

Inference with Transformers

import os
import json
import cv2
import random
from typing import List
import pycocotools.mask as mask_util
import numpy as np
import torch
from transformers import AutoModel, AutoTokenizer
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
import torch.nn.functional as F
from transformers import CLIPImageProcessor

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
VPT_CONTEXT_TOKEN = '<VPT_CONTEXT>'

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6, upscale=False):
    if isinstance(image_file, str):
        image = Image.open(image_file).convert('RGB')
    else:
        image = image_file.convert('RGB')

    if upscale:
        image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray:
    """
    Args:
        polygons (list[ndarray]): each array has shape (Nx2,)
        height, width (int)

    Returns:
        ndarray: a bool mask of shape (height, width)
    """
    if len(polygons) == 0:
        # COCOAPI does not support empty polygons
        return np.zeros((height, width)).astype(bool)
    rles = mask_util.frPyObjects(polygons, height, width)
    masks = mask_util.decode(rles)
    reduced = np.add.reduce(masks, axis=2)
    m = np.where(reduced>=2, 0, reduced)
    # rle = mask_util.merge(rles)
    return m.astype(bool)

from distinctipy import distinctipy
def contour_rendering(image, masks, mask_ids=None):
    colors = distinctipy.get_colors(len(masks)+1)
    font = cv2.FONT_HERSHEY_SIMPLEX
    text_thickness = 2
    font_scale_list = []
    label_list = []
    color_list = []
    label_loc_list = []
    for anno_i in range(len(masks)):
        mask = masks[anno_i]
        contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        if colors[anno_i][0] > 0.9 and colors[anno_i][1] > 0.9 and colors[anno_i][2] > 0.9:
            color_anno_i = (colors[-1][2] * 255, colors[-1][1] * 255, colors[-1][0] * 255)
        else:
            color_anno_i = (colors[anno_i][2] * 255, colors[anno_i][1] * 255, colors[anno_i][0] * 255)
        
        cv2.drawContours(image, contours, -1, color=color_anno_i, thickness=2)

        cnt_area = []
        cnt_centroid = []
        cnt_bbox = []
        for cnt in contours:
            cnt_area.append(cv2.contourArea(cnt))
            M = cv2.moments(cnt)
            x, y, w, h = cv2.boundingRect(cnt)
            if M["m00"] > 0:
                cx = int(M["m10"] / M["m00"])
                cy = int(M["m01"] / M["m00"])
            else:
                cx, cy = x + w/2, y + h/2
            cnt_centroid.append((cx, cy))
            cnt_bbox.append((w, h))
        select_cnt = 0
        if len(cnt_area) > 1:
            select_cnt = np.argmax(np.array(cnt_area))
        select_centroid = cnt_centroid[select_cnt]
        visual_prompt_id = anno_i+1 if mask_ids is None else mask_ids[anno_i]
        boxW, boxH = cnt_bbox[select_cnt]
        if max(boxH, boxW) < 25:
            thickness=1
        else:
            thickness=text_thickness

        # find the optimal font scale: text width/height close to 1/5 of the bbox width/height
        ok = False
        for scale in reversed(range(5, 60, 1)):
            textSize = cv2.getTextSize(f"{visual_prompt_id}", font, scale/10, thickness)
            textW, textH = textSize[0][0], textSize[0][1]
            if textH / boxH > 0.15 or textW / boxW > 0.15:
                continue
            font_scale_list.append(scale/10)
            ok = True
            break
        if not ok:
            font_scale_list.append(0.5)
        label_list.append(visual_prompt_id)
        color_list.append(color_anno_i)

        (base_w, base_h), bottom = cv2.getTextSize(f"{visual_prompt_id}", font, font_scale_list[-1], thickness)
        label_loc_list.append((
            int(select_centroid[0] - base_w/2),
            int(select_centroid[1] + (base_h+bottom)/2)
        ))
    font_scale = min(font_scale_list)
    for anno_i in range(len(label_list)):
        (base_w, base_h), bottom = cv2.getTextSize(f"{label_list[anno_i]}", font, font_scale, thickness)
        cv2.rectangle(image, (label_loc_list[anno_i][0], int(label_loc_list[anno_i][1]-base_h-bottom/2)),
                      (label_loc_list[anno_i][0]+base_w, int(label_loc_list[anno_i][1]+bottom/2)),
                      color_list[anno_i], -1, 8)
        cv2.putText(image, f"{label_list[anno_i]}", label_loc_list[anno_i], font, font_scale,
                    (255, 255, 255), thickness)
    
    return None

path = "zhouyik/colva_internvl2_4b"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

generation_config = dict(max_new_tokens=1024, do_sample=True)

# pure-text conversation
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# image-text conversation
pixel_values = load_image(os.path.join(path, "examples/image1.jpg"), max_num=12).to(torch.bfloat16).cuda()
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')

# muti-images object matching
image_path_list = [os.path.join(path, "examples/match_case/FRAME00_ORI.jpg"), os.path.join(path, "examples/match_case/FRAME01_ORI.jpg")]
anno_file_list = [os.path.join(path, "examples/match_case/FRAME00.json"), os.path.join(path, "examples/match_case/FRAME01_CAND.json")]

# load annotations
region_list = []
for query_json_file in anno_file_list[:-1]:
    with open(query_json_file, 'r') as f:
        query_anno = json.load(f)
    ori_height, ori_width = query_anno[0]['height'], query_anno[0]['width']
    segm = query_anno[0]['segmentation']
    segm = [np.array(poly) for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
    mask = polygons_to_bitmask(segm, ori_height, ori_width)
    region_list.append(mask[np.newaxis, :, :].astype(np.uint8))
with open(anno_file_list[-1], 'r') as f:
    query_anno = json.load(f)
all_masks = []
for idx in range(len(query_anno)):
    ori_height, ori_width = query_anno[idx]['height'], query_anno[idx]['width']
    segm = query_anno[idx]['segmentation']
    segm = [np.array(poly) for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
    mask = polygons_to_bitmask(segm, ori_height, ori_width)
    all_masks.append(mask)
all_masks = np.stack(all_masks, axis=0)
region_list.append(all_masks.astype(np.uint8))

# draw the visual prompts on the image
overlied_images = [cv2.imread(img_file) for img_file in image_path_list]
for fidx, (image, regions) in enumerate(zip(overlied_images[:-1], region_list[:-1])):
    for region in regions:
        contours, hierarchy = cv2.findContours(region, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        cv2.drawContours(overlied_images[fidx], contours, -1, color=(255, 255, 0), thickness=2)
random_id = list(range(1, len(region_list[-1])+1))
random.shuffle(random_id)
all_region_ids = random_id
contour_rendering(overlied_images[-1], region_list[-1], random_id)

for fidx, overlied_image in enumerate(overlied_images):
    cv2.imwrite(f"./overlied_image_{fidx+1}.jpg", overlied_image)

overlied_images = [Image.fromarray(cv2.cvtColor(item, cv2.COLOR_BGR2RGB)) for item in overlied_images]

# prepare radio inputs
ot_image_processor = CLIPImageProcessor.from_pretrained("./nvidia/RADIO", trust_remote_code=True)
ot_images = [Image.open(image_name).convert('RGB') for image_name in image_path_list]
ot_pixel_values, ot_visual_prompts = [], []
for fi, image in enumerate(ot_images):
    w, h = image.size
    if w > h:
        target_size = (1024, int(h/w*1024))
    else:
        target_size = (int(w/h*1024), 1024)
    resized_image = image.resize(target_size)
    cur_w, cur_h = resized_image.size
    padded_image = np.ones(shape=(1024, 1024, 3), dtype=np.uint8) * 255
    padded_image[:cur_h, :cur_w, :] = np.array(resized_image)

    ot_pixel_values.append(ot_image_processor(images=Image.fromarray(padded_image), return_tensors='pt').pixel_values)
ot_pixel_values = torch.cat(ot_pixel_values).to(torch.bfloat16).cuda()

for regions in region_list:
    h, w = regions.shape[-2:]
    regions = torch.from_numpy(regions).to(ot_pixel_values.dtype).to(ot_pixel_values.device)
    if h > w:
        padded_regions = regions.new_zeros((regions.shape[0], h, h))
    else:
        padded_regions = regions.new_zeros((regions.shape[0], w, w))
    padded_regions[:, :h, :w] = regions
    resized_padded_regions = F.interpolate(padded_regions.unsqueeze(0), size=(1024, 1024), mode='bilinear').squeeze(0)
    ot_visual_prompts.append(resized_padded_regions)

# prepare choice items
choice_names = [f"{chr(i)}" for i in range(65,91)]
if len(regions) > len(choice_names) - 1:
    valid_num = len(choice_names) - 1
else:
    valid_num = len(regions)
region_ids = random_id[:valid_num]
choice_names = choice_names[:valid_num+1]

region_ids.sort()
multi_choices_str = ""
for choice_name, region_id in zip(choice_names[:-1], region_ids):
    multi_choices_str = multi_choices_str + f"{choice_name}. {region_id}\n"
multi_choices_str = multi_choices_str + f"{choice_names[-1]}. None of the above choices are correct\n"

question = "Here are two images. In the second image, I have marked several "\
    "visual objects with their contours in different colors, and each "\
    "is identified by a white numeric ID against a background that "\
    "matches the contour's color. Could you please tell me which of "\
    "these marked objects is the same as the object marked with a cyan "\
    "contour in the first image? Please make a choice from the following options: \n"

object_token_str = ""
for fidx in range(len(overlied_images)-1):
    object_token_str = object_token_str + f"Objects in Image-{fidx+1}: <query object>{VPT_CONTEXT_TOKEN}\n"
object_token_str = object_token_str + f"Objects in Image-{len(overlied_images)}: "
sorted_indices = sorted(range(len(all_region_ids)), key=lambda k: all_region_ids[k])
for sorted_idx in sorted_indices:
    object_token_str = object_token_str + f"<object-{all_region_ids[sorted_idx]}>{VPT_CONTEXT_TOKEN}, "
object_token_str = object_token_str[:-2] + '.\n'
prefix_str = f"Image-1: <image>\nImage-2: <image>\n" + object_token_str
question = prefix_str + question + multi_choices_str

num_patches_list = []
pixel_values_list = []
for overlied_image in overlied_images:
    pixel_values = load_image(overlied_image, max_num=12).to(torch.bfloat16).cuda()
    pixel_values_list.append(pixel_values)
    num_patches_list.append(pixel_values.size(0))
pixel_values = torch.cat(pixel_values_list, dim=0)

response, history = model.chat(tokenizer, pixel_values, question, generation_config, return_history=True, 
                               num_patches_list=num_patches_list, ot_pixel_values=ot_pixel_values, ot_visual_prompts=ot_visual_prompts)
print(f'User: {question}\nAssistant: {response}')

question = "Why are they the same one?"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True, 
                               num_patches_list=num_patches_list, ot_pixel_values=ot_pixel_values, ot_visual_prompts=ot_visual_prompts)
print(f'User: {question}\nAssistant: {response}')

License

This project is released under the MIT License. This project uses the pre-trained InternVL2-4B as a component, which is also licensed under the MIT License.

Citation

If you find this project useful in your research, please consider citing:

@misc{zhou2025sameexploringvisualcorrespondence,
      title={Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs}, 
      author={Yikang Zhou and Tao Zhang and Shilin Xu and Shihao Chen and Qianyu Zhou and Yunhai Tong and Shunping Ji and Jiangning Zhang and Xiangtai Li and Lu Qi},
      year={2025},
      eprint={2501.04670},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2501.04670}, 
}
Downloads last month
14
Safetensors
Model size
4.81B params
Tensor type
I64
F32
BF16
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for zhouyik/colva_internvl2_4b

Finetuned
(11)
this model