Model Card for yuhkis/llm-jp-3-13b-finetune
Model Details
Model Description
This is a LoRA-tuned version of LLM-jp-3-13b, fine-tuned on the Ichikara Instruction dataset.
- Developed by: Yuhki Shiraishi
- Model type: Instruction-tuned Japanese Language Model
- Language: Japanese
- License: CC-BY-NC-SA
- Finetuned from model: llm-jp/llm-jp-3-13b
Uses
Output Generation and Format
Implementation Details
To generate output in the required JSONL format:
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel
import torch
from tqdm import tqdm
import json
# Load model and tokenizer
model_id = "yuhkis/llm-jp-3-13b-finetune"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token=HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token=HF_TOKEN)
# Generate outputs
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "output": output})
# Save results to JSONL file
with open("results.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Output Format Specification
Required fields in the JSONL output:
- task_id: Task identifier (integer)
- output: Generated response (string)
Example output format:
{"task_id": 0, "output": "応答テキスト"}
Note: While additional fields (e.g., input, eval_aspect) may be included, only task_id and output are required for submission.
### Out-of-Scope Use
This model should not be used for:
- Commercial applications due to license restrictions
- Critical decision-making without human oversight
- Applications requiring strict reliability guarantees
## Bias, Risks, and Limitations
- The model inherits biases from its training data
- Output quality may vary depending on input complexity
- The model should not be used for making critical decisions without human oversight
### Recommendations
Users should be aware of the model's limitations and verify outputs when used in applications.
## Training Details
### Training Data
- Dataset: Ichikara Instruction Dataset
### Training Procedure
- **Training regime:** bf16 mixed precision
- **Library:** 🤗 Transformers
- **Optimization:** LoRA (Low-Rank Adaptation)
## Technical Specifications
### Model Architecture
- Base model: LLM-jp-3-13b
- Adaptation method: LoRA
## Citation
**BibTeX:**
```bibtex
@misc{shiraishi2024llm,
title={LLM-jp-3-13b-finetune: Instruction-tuned Japanese Language Model},
author={Yuhki Shiraishi},
year={2024},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co./yuhkis/llm-jp-3-13b-finetune}}
}
Base Model Citation:
@misc{llm-jp2024,
title={LLM-jp-3: Large Language Model for Japanese},
author={LLM-jp Project Team},
year={2024},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co./llm-jp/llm-jp-3-13b}}
}
Training Data Citation:
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎.
ichikara-instruction: LLMのための日本語インストラクションデータの構築.
言語処理学会第30回年次大会(2024)
Model Card Contact
Primary Contact:
- Name: Yuhki Shiraishi
- GitHub: @yuhkis
For questions regarding this model, please open an issue in the GitHub repository or contact via HuggingFace discussion forum.
Please include "LLM-jp-3-13b-finetune" in the subject line of any correspondence.