bibert-v0.1

This model was fine-tuned from bert-base-uncased on the Hebrew Bible verses. It was trained to perfrom fill-mask of randomly masked words. It achieved loss of 1.32 after 4700 training iterations.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
22
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.