segformer-b2-cloth-parse-9
This model is a fine-tuned version of mattmdjaga/segformer_b2_clothes on the cloth_parsing_mix dataset. It achieves the following results on the evaluation set:
- Loss: 0.0433
- Mean Iou: 0.8611
- Mean Accuracy: 0.9107
- Overall Accuracy: 0.9846
- Accuracy Background: 0.9964
- Accuracy Upper Torso: 0.9857
- Accuracy Left Pants: 0.9654
- Accuracy Right Patns: 0.9664
- Accuracy Skirts: 0.9065
- Accuracy Left Sleeve: 0.9591
- Accuracy Right Sleeve: 0.9662
- Accuracy Outer Collar: 0.6491
- Accuracy Inner Collar: 0.8015
- Iou Background: 0.9923
- Iou Upper Torso: 0.9655
- Iou Left Pants: 0.9017
- Iou Right Patns: 0.9085
- Iou Skirts: 0.8749
- Iou Left Sleeve: 0.9223
- Iou Right Sleeve: 0.9289
- Iou Outer Collar: 0.5394
- Iou Inner Collar: 0.7160
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Upper Torso | Accuracy Left Pants | Accuracy Right Patns | Accuracy Skirts | Accuracy Left Sleeve | Accuracy Right Sleeve | Accuracy Outer Collar | Accuracy Inner Collar | Iou Background | Iou Upper Torso | Iou Left Pants | Iou Right Patns | Iou Skirts | Iou Left Sleeve | Iou Right Sleeve | Iou Outer Collar | Iou Inner Collar |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1054 | 0.11 | 500 | 0.1180 | 0.7305 | 0.7971 | 0.9670 | 0.9902 | 0.9720 | 0.9654 | 0.9756 | 0.8036 | 0.9226 | 0.9289 | 0.0716 | 0.5444 | 0.9830 | 0.9234 | 0.8752 | 0.8765 | 0.7370 | 0.8236 | 0.8232 | 0.0703 | 0.4628 |
0.1033 | 0.22 | 1000 | 0.0851 | 0.7862 | 0.8418 | 0.9746 | 0.9924 | 0.9829 | 0.9665 | 0.9653 | 0.8491 | 0.9145 | 0.9226 | 0.3219 | 0.6608 | 0.9866 | 0.9424 | 0.8858 | 0.8875 | 0.8105 | 0.8538 | 0.8614 | 0.2833 | 0.5642 |
0.0944 | 0.32 | 1500 | 0.0713 | 0.8077 | 0.8595 | 0.9773 | 0.9941 | 0.9833 | 0.9566 | 0.9625 | 0.8924 | 0.9094 | 0.9181 | 0.4414 | 0.6774 | 0.9880 | 0.9481 | 0.8937 | 0.8950 | 0.8437 | 0.8668 | 0.8751 | 0.3629 | 0.5958 |
0.0746 | 0.43 | 2000 | 0.0683 | 0.8190 | 0.8770 | 0.9783 | 0.9941 | 0.9796 | 0.9652 | 0.9722 | 0.8656 | 0.9480 | 0.9562 | 0.4882 | 0.7236 | 0.9888 | 0.9497 | 0.9070 | 0.9127 | 0.8306 | 0.8790 | 0.8870 | 0.3945 | 0.6218 |
0.0548 | 0.54 | 2500 | 0.0666 | 0.8187 | 0.8713 | 0.9787 | 0.9951 | 0.9831 | 0.9580 | 0.9606 | 0.8651 | 0.9215 | 0.9453 | 0.4839 | 0.7293 | 0.9893 | 0.9514 | 0.8939 | 0.9006 | 0.8245 | 0.8812 | 0.8964 | 0.4010 | 0.6298 |
0.0728 | 0.65 | 3000 | 0.0591 | 0.8271 | 0.8806 | 0.9804 | 0.9945 | 0.9839 | 0.9624 | 0.9659 | 0.8982 | 0.9399 | 0.9430 | 0.4884 | 0.7493 | 0.9900 | 0.9551 | 0.8940 | 0.8966 | 0.8583 | 0.8930 | 0.9011 | 0.4100 | 0.6458 |
0.0505 | 0.75 | 3500 | 0.0648 | 0.8218 | 0.8745 | 0.9797 | 0.9947 | 0.9847 | 0.9858 | 0.9905 | 0.8402 | 0.9500 | 0.9587 | 0.4480 | 0.7178 | 0.9900 | 0.9534 | 0.9022 | 0.9037 | 0.8223 | 0.8944 | 0.9017 | 0.3881 | 0.6402 |
0.0601 | 0.86 | 4000 | 0.0568 | 0.8415 | 0.8951 | 0.9817 | 0.9952 | 0.9817 | 0.9632 | 0.9640 | 0.9170 | 0.9521 | 0.9541 | 0.5781 | 0.7508 | 0.9903 | 0.9576 | 0.9138 | 0.9199 | 0.8716 | 0.9010 | 0.9106 | 0.4562 | 0.6529 |
0.0438 | 0.97 | 4500 | 0.0569 | 0.8431 | 0.8925 | 0.9815 | 0.9947 | 0.9844 | 0.9764 | 0.9838 | 0.8870 | 0.9492 | 0.9595 | 0.5561 | 0.7416 | 0.9903 | 0.9560 | 0.9287 | 0.9370 | 0.8585 | 0.9000 | 0.9089 | 0.4524 | 0.6559 |
0.0617 | 1.08 | 5000 | 0.0529 | 0.8417 | 0.8933 | 0.9816 | 0.9952 | 0.9841 | 0.9602 | 0.9631 | 0.8922 | 0.9475 | 0.9533 | 0.5797 | 0.7642 | 0.9907 | 0.9571 | 0.9097 | 0.9126 | 0.8488 | 0.9044 | 0.9158 | 0.4687 | 0.6678 |
0.0452 | 1.19 | 5500 | 0.0557 | 0.8351 | 0.8935 | 0.9812 | 0.9949 | 0.9842 | 0.9644 | 0.9667 | 0.8781 | 0.9494 | 0.9604 | 0.5961 | 0.7471 | 0.9906 | 0.9588 | 0.8803 | 0.8885 | 0.8349 | 0.9069 | 0.9169 | 0.4743 | 0.6645 |
0.0571 | 1.29 | 6000 | 0.0551 | 0.8351 | 0.8934 | 0.9810 | 0.9957 | 0.9831 | 0.9652 | 0.9693 | 0.8562 | 0.9593 | 0.9569 | 0.5959 | 0.7586 | 0.9910 | 0.9579 | 0.8842 | 0.8879 | 0.8188 | 0.9084 | 0.9155 | 0.4774 | 0.6749 |
0.0778 | 1.4 | 6500 | 0.0537 | 0.8430 | 0.8994 | 0.9818 | 0.9948 | 0.9839 | 0.9872 | 0.9921 | 0.8702 | 0.9587 | 0.9635 | 0.5790 | 0.7656 | 0.9911 | 0.9579 | 0.9044 | 0.9093 | 0.8458 | 0.9060 | 0.9157 | 0.4760 | 0.6808 |
0.0392 | 1.51 | 7000 | 0.0491 | 0.8503 | 0.9069 | 0.9830 | 0.9954 | 0.9823 | 0.9645 | 0.9666 | 0.9205 | 0.9534 | 0.9599 | 0.6214 | 0.7984 | 0.9916 | 0.9607 | 0.9123 | 0.9139 | 0.8755 | 0.9072 | 0.9180 | 0.4907 | 0.6830 |
0.0376 | 1.62 | 7500 | 0.0514 | 0.8442 | 0.9010 | 0.9819 | 0.9954 | 0.9832 | 0.9652 | 0.9660 | 0.8850 | 0.9525 | 0.9598 | 0.6257 | 0.7762 | 0.9914 | 0.9586 | 0.8944 | 0.9053 | 0.8355 | 0.9104 | 0.9215 | 0.4965 | 0.6838 |
0.0391 | 1.73 | 8000 | 0.0492 | 0.8422 | 0.8993 | 0.9819 | 0.9958 | 0.9836 | 0.9641 | 0.9671 | 0.8692 | 0.9561 | 0.9661 | 0.6159 | 0.7756 | 0.9916 | 0.9596 | 0.8882 | 0.8930 | 0.8338 | 0.9103 | 0.9189 | 0.4982 | 0.6860 |
0.0446 | 1.83 | 8500 | 0.0491 | 0.8515 | 0.9079 | 0.9829 | 0.9960 | 0.9836 | 0.9890 | 0.9913 | 0.8770 | 0.9505 | 0.9631 | 0.6458 | 0.7751 | 0.9916 | 0.9603 | 0.9114 | 0.9161 | 0.8559 | 0.9100 | 0.9217 | 0.5096 | 0.6867 |
0.041 | 1.94 | 9000 | 0.0482 | 0.8464 | 0.8978 | 0.9825 | 0.9958 | 0.9848 | 0.9619 | 0.9668 | 0.8822 | 0.9569 | 0.9659 | 0.5961 | 0.7703 | 0.9916 | 0.9602 | 0.8958 | 0.9018 | 0.8438 | 0.9148 | 0.9231 | 0.4966 | 0.6899 |
0.0744 | 2.05 | 9500 | 0.0474 | 0.8523 | 0.9018 | 0.9834 | 0.9961 | 0.9840 | 0.9598 | 0.9633 | 0.9195 | 0.9471 | 0.9644 | 0.6055 | 0.7766 | 0.9919 | 0.9619 | 0.9095 | 0.9125 | 0.8697 | 0.9113 | 0.9238 | 0.5010 | 0.6889 |
0.0433 | 2.16 | 10000 | 0.0471 | 0.8581 | 0.9103 | 0.9842 | 0.9951 | 0.9843 | 0.9617 | 0.9646 | 0.9416 | 0.9549 | 0.9718 | 0.6305 | 0.7879 | 0.9915 | 0.9644 | 0.9100 | 0.9155 | 0.8976 | 0.9145 | 0.9245 | 0.5127 | 0.6920 |
0.0412 | 2.26 | 10500 | 0.0468 | 0.8574 | 0.9042 | 0.9835 | 0.9956 | 0.9848 | 0.9628 | 0.9669 | 0.9023 | 0.9615 | 0.9677 | 0.6115 | 0.7847 | 0.9918 | 0.9601 | 0.9248 | 0.9286 | 0.8656 | 0.9177 | 0.9245 | 0.5073 | 0.6964 |
0.0489 | 2.37 | 11000 | 0.0496 | 0.8511 | 0.9029 | 0.9832 | 0.9956 | 0.9858 | 0.9905 | 0.9948 | 0.8694 | 0.9574 | 0.9654 | 0.5748 | 0.7926 | 0.9921 | 0.9604 | 0.9066 | 0.9086 | 0.8615 | 0.9167 | 0.9228 | 0.4913 | 0.7004 |
0.0388 | 2.48 | 11500 | 0.0450 | 0.8594 | 0.9036 | 0.9849 | 0.9957 | 0.9857 | 0.9621 | 0.9648 | 0.9620 | 0.9493 | 0.9604 | 0.5733 | 0.7793 | 0.9922 | 0.9649 | 0.9155 | 0.9205 | 0.9076 | 0.9138 | 0.9257 | 0.4941 | 0.7002 |
0.0409 | 2.59 | 12000 | 0.0493 | 0.8579 | 0.9124 | 0.9844 | 0.9955 | 0.9853 | 0.9928 | 0.9929 | 0.9083 | 0.9573 | 0.9671 | 0.6288 | 0.7832 | 0.9921 | 0.9651 | 0.9046 | 0.9086 | 0.8842 | 0.9196 | 0.9267 | 0.5175 | 0.7026 |
0.0477 | 2.7 | 12500 | 0.0436 | 0.8610 | 0.9051 | 0.9848 | 0.9957 | 0.9868 | 0.9639 | 0.9675 | 0.9478 | 0.9445 | 0.9590 | 0.5972 | 0.7831 | 0.9919 | 0.9654 | 0.9187 | 0.9251 | 0.9029 | 0.9126 | 0.9253 | 0.5035 | 0.7034 |
0.0488 | 2.8 | 13000 | 0.0450 | 0.8577 | 0.9076 | 0.9842 | 0.9963 | 0.9848 | 0.9712 | 0.9695 | 0.9132 | 0.9493 | 0.9621 | 0.6188 | 0.8026 | 0.9924 | 0.9635 | 0.9095 | 0.9124 | 0.8742 | 0.9172 | 0.9276 | 0.5157 | 0.7065 |
0.0879 | 2.91 | 13500 | 0.0516 | 0.8453 | 0.8949 | 0.9819 | 0.9960 | 0.9867 | 0.9631 | 0.9665 | 0.8325 | 0.9618 | 0.9678 | 0.6033 | 0.7763 | 0.9919 | 0.9574 | 0.8955 | 0.9007 | 0.8088 | 0.9206 | 0.9245 | 0.5069 | 0.7013 |
0.0525 | 3.02 | 14000 | 0.0474 | 0.8521 | 0.9053 | 0.9830 | 0.9959 | 0.9849 | 0.9850 | 0.9925 | 0.8703 | 0.9481 | 0.9597 | 0.6076 | 0.8038 | 0.9923 | 0.9600 | 0.9050 | 0.9099 | 0.8420 | 0.9143 | 0.9263 | 0.5148 | 0.7044 |
0.0455 | 3.13 | 14500 | 0.0435 | 0.8579 | 0.9111 | 0.9842 | 0.9953 | 0.9852 | 0.9646 | 0.9672 | 0.9255 | 0.9569 | 0.9654 | 0.6514 | 0.7888 | 0.9923 | 0.9642 | 0.8971 | 0.9055 | 0.8780 | 0.9182 | 0.9284 | 0.5327 | 0.7046 |
0.0454 | 3.24 | 15000 | 0.0451 | 0.8599 | 0.9161 | 0.9844 | 0.9953 | 0.9858 | 0.9895 | 0.9907 | 0.8944 | 0.9635 | 0.9692 | 0.6643 | 0.7925 | 0.9924 | 0.9645 | 0.9061 | 0.9107 | 0.8803 | 0.9202 | 0.9236 | 0.5356 | 0.7058 |
0.0687 | 3.34 | 15500 | 0.0496 | 0.8482 | 0.9017 | 0.9827 | 0.9959 | 0.9869 | 0.9715 | 0.9676 | 0.8483 | 0.9616 | 0.9672 | 0.6235 | 0.7932 | 0.9922 | 0.9614 | 0.8904 | 0.8909 | 0.8269 | 0.9187 | 0.9218 | 0.5249 | 0.7069 |
0.0555 | 3.45 | 16000 | 0.0445 | 0.8568 | 0.9081 | 0.9838 | 0.9964 | 0.9858 | 0.9649 | 0.9681 | 0.8880 | 0.9585 | 0.9610 | 0.6510 | 0.7995 | 0.9922 | 0.9635 | 0.8996 | 0.9073 | 0.8582 | 0.9230 | 0.9257 | 0.5328 | 0.7093 |
0.0528 | 3.56 | 16500 | 0.0477 | 0.8549 | 0.9053 | 0.9833 | 0.9958 | 0.9875 | 0.9668 | 0.9677 | 0.8740 | 0.9512 | 0.9631 | 0.6512 | 0.7902 | 0.9920 | 0.9618 | 0.9021 | 0.9036 | 0.8486 | 0.9185 | 0.9254 | 0.5348 | 0.7070 |
0.043 | 3.67 | 17000 | 0.0439 | 0.8633 | 0.9173 | 0.9849 | 0.9960 | 0.9851 | 0.9860 | 0.9893 | 0.9114 | 0.9555 | 0.9656 | 0.6623 | 0.8046 | 0.9921 | 0.9666 | 0.9083 | 0.9158 | 0.8910 | 0.9197 | 0.9262 | 0.5391 | 0.7111 |
0.0372 | 3.77 | 17500 | 0.0474 | 0.8555 | 0.9039 | 0.9836 | 0.9959 | 0.9876 | 0.9626 | 0.9647 | 0.8818 | 0.9556 | 0.9623 | 0.6393 | 0.7858 | 0.9921 | 0.9623 | 0.8999 | 0.9065 | 0.8526 | 0.9218 | 0.9264 | 0.5299 | 0.7082 |
0.0614 | 3.88 | 18000 | 0.0463 | 0.8564 | 0.9088 | 0.9839 | 0.9959 | 0.9853 | 0.9644 | 0.9662 | 0.9035 | 0.9569 | 0.9638 | 0.6413 | 0.8025 | 0.9921 | 0.9643 | 0.8967 | 0.9020 | 0.8607 | 0.9202 | 0.9276 | 0.5330 | 0.7111 |
0.0413 | 3.99 | 18500 | 0.0453 | 0.8579 | 0.9123 | 0.9841 | 0.9963 | 0.9848 | 0.9794 | 0.9828 | 0.8865 | 0.9613 | 0.9695 | 0.6526 | 0.7977 | 0.9922 | 0.9648 | 0.8991 | 0.9047 | 0.8629 | 0.9221 | 0.9274 | 0.5369 | 0.7112 |
0.0386 | 4.1 | 19000 | 0.0438 | 0.8578 | 0.9109 | 0.9842 | 0.9959 | 0.9844 | 0.9649 | 0.9667 | 0.9154 | 0.9580 | 0.9662 | 0.6408 | 0.8062 | 0.9924 | 0.9644 | 0.8973 | 0.9025 | 0.8683 | 0.9196 | 0.9279 | 0.5340 | 0.7134 |
0.0541 | 4.21 | 19500 | 0.0443 | 0.8577 | 0.9118 | 0.9840 | 0.9957 | 0.9847 | 0.9829 | 0.9872 | 0.8935 | 0.9594 | 0.9686 | 0.6265 | 0.8077 | 0.9921 | 0.9641 | 0.9017 | 0.9079 | 0.8621 | 0.9203 | 0.9277 | 0.5298 | 0.7133 |
0.0409 | 4.31 | 20000 | 0.0433 | 0.8560 | 0.9083 | 0.9840 | 0.9959 | 0.9860 | 0.9670 | 0.9687 | 0.9020 | 0.9578 | 0.9632 | 0.6421 | 0.7918 | 0.9922 | 0.9652 | 0.8921 | 0.8966 | 0.8633 | 0.9206 | 0.9278 | 0.5349 | 0.7117 |
0.0398 | 4.42 | 20500 | 0.0451 | 0.8581 | 0.9102 | 0.9840 | 0.9960 | 0.9859 | 0.9687 | 0.9685 | 0.8885 | 0.9597 | 0.9684 | 0.6554 | 0.8004 | 0.9922 | 0.9638 | 0.9000 | 0.9042 | 0.8595 | 0.9232 | 0.9266 | 0.5395 | 0.7144 |
0.038 | 4.53 | 21000 | 0.0464 | 0.8608 | 0.9123 | 0.9843 | 0.9959 | 0.9866 | 0.9885 | 0.9907 | 0.8739 | 0.9616 | 0.9678 | 0.6398 | 0.8056 | 0.9921 | 0.9639 | 0.9088 | 0.9160 | 0.8657 | 0.9238 | 0.9273 | 0.5347 | 0.7150 |
0.0295 | 4.64 | 21500 | 0.0433 | 0.8596 | 0.9094 | 0.9840 | 0.9960 | 0.9864 | 0.9641 | 0.9664 | 0.8985 | 0.9535 | 0.9582 | 0.6581 | 0.8033 | 0.9922 | 0.9633 | 0.9056 | 0.9102 | 0.8619 | 0.9195 | 0.9276 | 0.5408 | 0.7151 |
0.0318 | 4.75 | 22000 | 0.0439 | 0.8600 | 0.9127 | 0.9842 | 0.9964 | 0.9848 | 0.9665 | 0.9676 | 0.8929 | 0.9627 | 0.9689 | 0.6656 | 0.8089 | 0.9923 | 0.9643 | 0.9007 | 0.9080 | 0.8645 | 0.9223 | 0.9283 | 0.5444 | 0.7156 |
0.0377 | 4.85 | 22500 | 0.0429 | 0.8619 | 0.9125 | 0.9846 | 0.9963 | 0.9849 | 0.9633 | 0.9666 | 0.9115 | 0.9609 | 0.9689 | 0.6527 | 0.8069 | 0.9923 | 0.9654 | 0.9052 | 0.9104 | 0.8762 | 0.9217 | 0.9288 | 0.5407 | 0.7166 |
0.0419 | 4.96 | 23000 | 0.0433 | 0.8611 | 0.9107 | 0.9846 | 0.9964 | 0.9857 | 0.9654 | 0.9664 | 0.9065 | 0.9591 | 0.9662 | 0.6491 | 0.8015 | 0.9923 | 0.9655 | 0.9017 | 0.9085 | 0.8749 | 0.9223 | 0.9289 | 0.5394 | 0.7160 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yolo12138/segformer-b2-cloth-parse-9
Base model
mattmdjaga/segformer_b2_clothes