ONNX version of sentence-transformers/all-mpnet-base-v2
This is the ONNX version of https://huggingface.co./sentence-transformers/all-mpnet-base-v2, examined that the produced embeddings are the same.
Optmized for CPU usage.
Convert
The same checkpoint can also be created by using the convert.py
script.
Usage - transformers
Exactly the same as in sentence-transformers/all-mpnet-base-v2
except using ORTModelForFeatureExtraction
from optimum.
pip install optimum[onnxruntime]
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForFeatureExtraction
import torch
import torch.nn.functional as F
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('yilunzhang/all-mpnet-base-v2-onnx')
model = ORTModelForFeatureExtraction.from_pretrained('yilunzhang/all-mpnet-base-v2-onnx')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
- Downloads last month
- 12
Inference API (serverless) has been turned off for this model.