Note

Please use (yangheng/deberta-v3-base-absa-v1.1)[https://huggingface.co./yangheng/deberta-v3-base-absa-v1.1], which is smaller and has better performance. This model is training with 30k+ ABSA samples, see ABSADatasets. Yet the test sets are not included in pre-training, so you can use this model for training and benchmarking on common ABSA datasets, e.g., Laptop14, Rest14 datasets. (Except for the Rest15 dataset!)

DeBERTa for aspect-based sentiment analysis

The deberta-v3-large-absa model for aspect-based sentiment analysis, trained with English datasets from ABSADatasets.

Training Model

This model is trained based on the FAST-LCF-BERT model with microsoft/deberta-v3-large, which comes from PyABSA. To track state-of-the-art models, please see PyASBA.

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")

model = AutoModelForSequenceClassification.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")

Example in PyASBA

An example for using FAST-LCF-BERT in PyASBA datasets.

Datasets

This model is fine-tuned with 180k examples for the ABSA dataset (including augmented data). Training dataset files:

loading: integrated_datasets/apc_datasets/SemEval/laptop14/Laptops_Train.xml.seg
loading: integrated_datasets/apc_datasets/SemEval/restaurant14/Restaurants_Train.xml.seg
loading: integrated_datasets/apc_datasets/SemEval/restaurant16/restaurant_train.raw
loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/train.raw
loading: integrated_datasets/apc_datasets/MAMS/train.xml.dat
loading: integrated_datasets/apc_datasets/Television/Television_Train.xml.seg
loading: integrated_datasets/apc_datasets/TShirt/Menstshirt_Train.xml.seg
loading: integrated_datasets/apc_datasets/Yelp/yelp.train.txt

If you use this model in your research, please cite our paper:

@article{YangZMT21,
  author    = {Heng Yang and
               Biqing Zeng and
               Mayi Xu and
               Tianxing Wang},
  title     = {Back to Reality: Leveraging Pattern-driven Modeling to Enable Affordable
               Sentiment Dependency Learning},
  journal   = {CoRR},
  volume    = {abs/2110.08604},
  year      = {2021},
  url       = {https://arxiv.org/abs/2110.08604},
  eprinttype = {arXiv},
  eprint    = {2110.08604},
  timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2110-08604.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Downloads last month
229
Safetensors
Model size
435M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using yangheng/deberta-v3-large-absa-v1.1 1

Collection including yangheng/deberta-v3-large-absa-v1.1