Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: fxmarty/tiny-llama-fast-tokenizer
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
  - fc6136aac03f618a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/fc6136aac03f618a_train_data.json
  type:
    field_instruction: text
    field_output: title
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/b1c9c4ec-ffa2-429d-9c5b-90b5979c502d
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
special_tokens:
  pad_token: </s>
tokenizer_type: LlamaTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: fxmarty/tiny-llama-fast-tokenizer-/workspace/input_data/fc6136aac03f618a_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true

b1c9c4ec-ffa2-429d-9c5b-90b5979c502d

This model is a fine-tuned version of fxmarty/tiny-llama-fast-tokenizer on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 18

Training results

Training Loss Epoch Step Validation Loss
No log 0.0071 1 10.3739

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Safetensors
Model size
1.03M params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for willtensora/b1c9c4ec-ffa2-429d-9c5b-90b5979c502d

Finetuned
(2)
this model