See axolotl config
axolotl version: 0.4.1
base_model: JackFram/llama-68m
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- ff3a521d02fa72b2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ff3a521d02fa72b2_train_data.json
type:
field_instruction: context
field_output: question
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/4ada8092-cc1e-445c-9260-a580ef2586ae
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
special_tokens:
pad_token: </s>
tokenizer_type: LlamaTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: JackFram/llama-68m-/workspace/input_data/ff3a521d02fa72b2_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
4ada8092-cc1e-445c-9260-a580ef2586ae
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2208
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 205
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 6.7193 |
1.5212 | 0.0122 | 20 | 1.0774 |
0.7826 | 0.0244 | 40 | 0.6352 |
0.5492 | 0.0366 | 60 | 0.4713 |
0.3663 | 0.0488 | 80 | 0.3924 |
0.3533 | 0.0610 | 100 | 0.3112 |
0.2434 | 0.0732 | 120 | 0.2761 |
0.2989 | 0.0854 | 140 | 0.2445 |
0.2464 | 0.0976 | 160 | 0.2251 |
0.2233 | 0.1098 | 180 | 0.2203 |
0.2213 | 0.1220 | 200 | 0.2208 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for willtensora/4ada8092-cc1e-445c-9260-a580ef2586ae
Base model
JackFram/llama-68m