See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2-0.5B
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- 745d2d05aaed18f4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/745d2d05aaed18f4_train_data.json
type:
field_input: pos
field_instruction: task
field_output: query
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/459779f2-cbce-4ec0-b11c-1dcdf92498d8
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
tokenizer_type: Qwen2TokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: Qwen/Qwen2-0.5B-/workspace/input_data/745d2d05aaed18f4_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
459779f2-cbce-4ec0-b11c-1dcdf92498d8
This model is a fine-tuned version of Qwen/Qwen2-0.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 14
- training_steps: 291
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 3.9660 |
2.8207 | 0.0086 | 20 | 3.1038 |
3.1247 | 0.0172 | 40 | 3.0989 |
2.9411 | 0.0258 | 60 | 2.8986 |
2.9915 | 0.0344 | 80 | 2.8742 |
2.8038 | 0.0430 | 100 | 2.8405 |
2.8518 | 0.0516 | 120 | 2.7728 |
2.7079 | 0.0602 | 140 | 2.6985 |
2.6076 | 0.0688 | 160 | 2.6416 |
2.6172 | 0.0774 | 180 | 2.5695 |
2.552 | 0.0860 | 200 | 2.5151 |
2.5036 | 0.0946 | 220 | 2.4783 |
2.4887 | 0.1032 | 240 | 2.4610 |
2.4008 | 0.1118 | 260 | 2.4569 |
2.424 | 0.1204 | 280 | 2.4560 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for willtensora/459779f2-cbce-4ec0-b11c-1dcdf92498d8
Base model
Qwen/Qwen2-0.5B