Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Qwen/Qwen2-0.5B
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
  - 745d2d05aaed18f4_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/745d2d05aaed18f4_train_data.json
  type:
    field_input: pos
    field_instruction: task
    field_output: query
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/459779f2-cbce-4ec0-b11c-1dcdf92498d8
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
tokenizer_type: Qwen2TokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: Qwen/Qwen2-0.5B-/workspace/input_data/745d2d05aaed18f4_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true

459779f2-cbce-4ec0-b11c-1dcdf92498d8

This model is a fine-tuned version of Qwen/Qwen2-0.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4560

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 14
  • training_steps: 291

Training results

Training Loss Epoch Step Validation Loss
No log 0.0004 1 3.9660
2.8207 0.0086 20 3.1038
3.1247 0.0172 40 3.0989
2.9411 0.0258 60 2.8986
2.9915 0.0344 80 2.8742
2.8038 0.0430 100 2.8405
2.8518 0.0516 120 2.7728
2.7079 0.0602 140 2.6985
2.6076 0.0688 160 2.6416
2.6172 0.0774 180 2.5695
2.552 0.0860 200 2.5151
2.5036 0.0946 220 2.4783
2.4887 0.1032 240 2.4610
2.4008 0.1118 260 2.4569
2.424 0.1204 280 2.4560

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
494M params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for willtensora/459779f2-cbce-4ec0-b11c-1dcdf92498d8

Base model

Qwen/Qwen2-0.5B
Finetuned
(61)
this model