XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Gothic

This model is part of our paper called:

  • Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages

Check the Space for more details.

Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-got")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-got")
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-got

Space using wietsedv/xlm-roberta-base-ft-udpos28-got 1

Evaluation results

  • English Test accuracy on Universal Dependencies v2.8
    self-reported
    47.900
  • Dutch Test accuracy on Universal Dependencies v2.8
    self-reported
    50.200
  • German Test accuracy on Universal Dependencies v2.8
    self-reported
    38.900
  • Italian Test accuracy on Universal Dependencies v2.8
    self-reported
    46.800
  • French Test accuracy on Universal Dependencies v2.8
    self-reported
    50.200
  • Spanish Test accuracy on Universal Dependencies v2.8
    self-reported
    51.300
  • Russian Test accuracy on Universal Dependencies v2.8
    self-reported
    52.400
  • Swedish Test accuracy on Universal Dependencies v2.8
    self-reported
    51.500
  • Norwegian Test accuracy on Universal Dependencies v2.8
    self-reported
    49.100
  • Danish Test accuracy on Universal Dependencies v2.8
    self-reported
    50.800