Edit model card

swin-tiny-patch4-window7-224-finetuned-landscape

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2104
  • Accuracy: 0.9313

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.3423 0.9684 23 2.8014 0.2867
0.9369 1.9789 47 0.3964 0.8758
0.4031 2.9895 71 0.2710 0.9168
0.3021 4.0 95 0.2255 0.9260
0.248 4.9684 118 0.2175 0.9300
0.2465 5.9789 142 0.2207 0.9207
0.1814 6.9895 166 0.2162 0.9207
0.1806 8.0 190 0.1954 0.9392
0.1839 8.9684 213 0.1863 0.9353
0.1699 9.9789 237 0.1898 0.9366
0.1493 10.9895 261 0.1981 0.9313
0.128 12.0 285 0.2112 0.9300
0.1473 12.9684 308 0.2174 0.9353
0.1304 13.9789 332 0.2083 0.9353
0.12 14.9895 356 0.2050 0.9379
0.0987 16.0 380 0.2054 0.9339
0.1187 16.9684 403 0.2136 0.9353
0.1187 17.9789 427 0.2136 0.9326
0.1325 18.9895 451 0.2089 0.9313
0.1071 19.3684 460 0.2104 0.9313

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
28.3M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vintage-lavender619/swin-tiny-patch4-window7-224-finetuned-landscape

Finetuned
(464)
this model

Evaluation results