doctorLLM10k / README.md
vikash06's picture
Adding Evaluation Results (#1)
4c61d59 verified
metadata
license: mit
datasets:
  - lavita/ChatDoctor-HealthCareMagic-100k
model-index:
  - name: doctorLLM10k
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 54.95
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/doctorLLM10k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 79.94
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/doctorLLM10k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 44.4
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/doctorLLM10k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 44.76
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/doctorLLM10k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.01
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/doctorLLM10k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 10.16
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=vikash06/doctorLLM10k
          name: Open LLM Leaderboard

Sample Input on Postman API:

image/png

Number of epochs: 10 Number of Data points: 10000

Creative Writing: Write a question or instruction that requires a creative medical response from a doctor.

The instruction should be reasonable to ask of a person with general medical knowledge and should not require searching. In this task, your prompt should give very specific instructions to follow. Constraints, instructions, guidelines, or requirements all work, and the more of them the better.

Reference dataset: https://github.com/Kent0n-Li/ChatDoctor

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 50.70
AI2 Reasoning Challenge (25-Shot) 54.95
HellaSwag (10-Shot) 79.94
MMLU (5-Shot) 44.40
TruthfulQA (0-shot) 44.76
Winogrande (5-shot) 70.01
GSM8k (5-shot) 10.16