|
using System; |
|
using Unity.Mathematics; |
|
using Unity.Sentis; |
|
using UnityEngine; |
|
|
|
public class HandDetection : MonoBehaviour |
|
{ |
|
public HandPreview handPreview; |
|
public ImagePreview imagePreview; |
|
public Texture2D imageTexture; |
|
public ModelAsset handDetector; |
|
public ModelAsset handLandmarker; |
|
public TextAsset anchorsCSV; |
|
|
|
public float scoreThreshold = 0.5f; |
|
|
|
const int k_NumAnchors = 2016; |
|
float[,] m_Anchors; |
|
|
|
const int k_NumKeypoints = 21; |
|
const int detectorInputSize = 192; |
|
const int landmarkerInputSize = 224; |
|
|
|
Worker m_HandDetectorWorker; |
|
Worker m_HandLandmarkerWorker; |
|
Tensor<float> m_DetectorInput; |
|
Tensor<float> m_LandmarkerInput; |
|
Awaitable m_DetectAwaitable; |
|
|
|
float m_TextureWidth; |
|
float m_TextureHeight; |
|
|
|
public async void Start() |
|
{ |
|
m_Anchors = BlazeUtils.LoadAnchors(anchorsCSV.text, k_NumAnchors); |
|
|
|
var handDetectorModel = ModelLoader.Load(handDetector); |
|
|
|
|
|
var graph = new FunctionalGraph(); |
|
var input = graph.AddInput(handDetectorModel, 0); |
|
var outputs = Functional.Forward(handDetectorModel, input); |
|
var boxes = outputs[1]; |
|
var scores = outputs[0]; |
|
var idx_scores_boxes = BlazeUtils.ArgMaxFiltering(boxes, scores); |
|
handDetectorModel = graph.Compile(idx_scores_boxes.Item1, idx_scores_boxes.Item2, idx_scores_boxes.Item3); |
|
|
|
m_HandDetectorWorker = new Worker(handDetectorModel, BackendType.GPUCompute); |
|
|
|
var handLandmarkerModel = ModelLoader.Load(handLandmarker); |
|
m_HandLandmarkerWorker = new Worker(handLandmarkerModel, BackendType.GPUCompute); |
|
|
|
m_DetectorInput = new Tensor<float>(new TensorShape(1, detectorInputSize, detectorInputSize, 3)); |
|
m_LandmarkerInput = new Tensor<float>(new TensorShape(1, landmarkerInputSize, landmarkerInputSize, 3)); |
|
|
|
while (true) |
|
{ |
|
try |
|
{ |
|
m_DetectAwaitable = Detect(imageTexture); |
|
await m_DetectAwaitable; |
|
} |
|
catch (OperationCanceledException) |
|
{ |
|
break; |
|
} |
|
} |
|
|
|
m_HandDetectorWorker.Dispose(); |
|
m_HandLandmarkerWorker.Dispose(); |
|
m_DetectorInput.Dispose(); |
|
m_LandmarkerInput.Dispose(); |
|
} |
|
|
|
Vector3 ImageToWorld(Vector2 position) |
|
{ |
|
return (position - 0.5f * new Vector2(m_TextureWidth, m_TextureHeight)) / m_TextureHeight; |
|
} |
|
|
|
async Awaitable Detect(Texture texture) |
|
{ |
|
m_TextureWidth = texture.width; |
|
m_TextureHeight = texture.height; |
|
imagePreview.SetTexture(texture); |
|
|
|
var size = Mathf.Max(texture.width, texture.height); |
|
|
|
|
|
var scale = size / (float)detectorInputSize; |
|
var M = BlazeUtils.mul(BlazeUtils.TranslationMatrix(0.5f * (new Vector2(texture.width, texture.height) + new Vector2(-size, size))), BlazeUtils.ScaleMatrix(new Vector2(scale, -scale))); |
|
BlazeUtils.SampleImageAffine(texture, m_DetectorInput, M); |
|
|
|
m_HandDetectorWorker.Schedule(m_DetectorInput); |
|
|
|
var outputIdxAwaitable = (m_HandDetectorWorker.PeekOutput(0) as Tensor<int>).ReadbackAndCloneAsync(); |
|
var outputScoreAwaitable = (m_HandDetectorWorker.PeekOutput(1) as Tensor<float>).ReadbackAndCloneAsync(); |
|
var outputBoxAwaitable = (m_HandDetectorWorker.PeekOutput(2) as Tensor<float>).ReadbackAndCloneAsync(); |
|
|
|
using var outputIdx = await outputIdxAwaitable; |
|
using var outputScore = await outputScoreAwaitable; |
|
using var outputBox = await outputBoxAwaitable; |
|
|
|
var scorePassesThreshold = outputScore[0] >= scoreThreshold; |
|
handPreview.SetActive(scorePassesThreshold); |
|
|
|
if (!scorePassesThreshold) |
|
return; |
|
|
|
var idx = outputIdx[0]; |
|
|
|
var anchorPosition = detectorInputSize * new float2(m_Anchors[idx, 0], m_Anchors[idx, 1]); |
|
|
|
var boxCentre_TensorSpace = anchorPosition + new float2(outputBox[0, 0, 0], outputBox[0, 0, 1]); |
|
var boxSize_TensorSpace = math.max(outputBox[0, 0, 2], outputBox[0, 0, 3]); |
|
|
|
var kp0_TensorSpace = anchorPosition + new float2(outputBox[0, 0, 4 + 2 * 0 + 0], outputBox[0, 0, 4 + 2 * 0 + 1]); |
|
var kp2_TensorSpace = anchorPosition + new float2(outputBox[0, 0, 4 + 2 * 2 + 0], outputBox[0, 0, 4 + 2 * 2 + 1]); |
|
var delta_TensorSpace = kp2_TensorSpace - kp0_TensorSpace; |
|
var up_TensorSpace = delta_TensorSpace / math.length(delta_TensorSpace); |
|
var theta = math.atan2(delta_TensorSpace.y, delta_TensorSpace.x); |
|
var rotation = 0.5f * Mathf.PI - theta; |
|
boxCentre_TensorSpace += 0.5f * boxSize_TensorSpace * up_TensorSpace; |
|
boxSize_TensorSpace *= 2.6f; |
|
|
|
var origin2 = new float2(0.5f * landmarkerInputSize, 0.5f * landmarkerInputSize); |
|
var scale2 = boxSize_TensorSpace / landmarkerInputSize; |
|
var M2 = BlazeUtils.mul(M, BlazeUtils.mul(BlazeUtils.mul(BlazeUtils.mul(BlazeUtils.TranslationMatrix(boxCentre_TensorSpace), BlazeUtils.ScaleMatrix(new float2(scale2, -scale2))), BlazeUtils.RotationMatrix(rotation)), BlazeUtils.TranslationMatrix(-origin2))); |
|
BlazeUtils.SampleImageAffine(texture, m_LandmarkerInput, M2); |
|
|
|
m_HandLandmarkerWorker.Schedule(m_LandmarkerInput); |
|
|
|
var landmarksAwaitable = (m_HandLandmarkerWorker.PeekOutput("Identity") as Tensor<float>).ReadbackAndCloneAsync(); |
|
using var landmarks = await landmarksAwaitable; |
|
|
|
for (var i = 0; i < k_NumKeypoints; i++) |
|
{ |
|
var position_ImageSpace = BlazeUtils.mul(M2, new float2(landmarks[3 * i + 0], landmarks[3 * i + 1])); |
|
|
|
Vector3 position_WorldSpace = ImageToWorld(position_ImageSpace) + new Vector3(0, 0, landmarks[3 * i + 2] / m_TextureHeight); |
|
handPreview.SetKeypoint(i, true, position_WorldSpace); |
|
} |
|
} |
|
|
|
void OnDestroy() |
|
{ |
|
m_DetectAwaitable.Cancel(); |
|
} |
|
} |
|
|