using System; using Unity.Mathematics; using Unity.Sentis; using UnityEngine; public class HandDetection : MonoBehaviour { public HandPreview handPreview; public ImagePreview imagePreview; public Texture2D imageTexture; public ModelAsset handDetector; public ModelAsset handLandmarker; public TextAsset anchorsCSV; public float scoreThreshold = 0.5f; const int k_NumAnchors = 2016; float[,] m_Anchors; const int k_NumKeypoints = 21; const int detectorInputSize = 192; const int landmarkerInputSize = 224; Worker m_HandDetectorWorker; Worker m_HandLandmarkerWorker; Tensor m_DetectorInput; Tensor m_LandmarkerInput; Awaitable m_DetectAwaitable; float m_TextureWidth; float m_TextureHeight; public async void Start() { m_Anchors = BlazeUtils.LoadAnchors(anchorsCSV.text, k_NumAnchors); var handDetectorModel = ModelLoader.Load(handDetector); // post process the model to filter scores + argmax select the best hand var graph = new FunctionalGraph(); var input = graph.AddInput(handDetectorModel, 0); var outputs = Functional.Forward(handDetectorModel, input); var boxes = outputs[1]; // (1, 2016, 18) var scores = outputs[0]; // (1, 2016, 1) var idx_scores_boxes = BlazeUtils.ArgMaxFiltering(boxes, scores); handDetectorModel = graph.Compile(idx_scores_boxes.Item1, idx_scores_boxes.Item2, idx_scores_boxes.Item3); m_HandDetectorWorker = new Worker(handDetectorModel, BackendType.GPUCompute); var handLandmarkerModel = ModelLoader.Load(handLandmarker); m_HandLandmarkerWorker = new Worker(handLandmarkerModel, BackendType.GPUCompute); m_DetectorInput = new Tensor(new TensorShape(1, detectorInputSize, detectorInputSize, 3)); m_LandmarkerInput = new Tensor(new TensorShape(1, landmarkerInputSize, landmarkerInputSize, 3)); while (true) { try { m_DetectAwaitable = Detect(imageTexture); await m_DetectAwaitable; } catch (OperationCanceledException) { break; } } m_HandDetectorWorker.Dispose(); m_HandLandmarkerWorker.Dispose(); m_DetectorInput.Dispose(); m_LandmarkerInput.Dispose(); } Vector3 ImageToWorld(Vector2 position) { return (position - 0.5f * new Vector2(m_TextureWidth, m_TextureHeight)) / m_TextureHeight; } async Awaitable Detect(Texture texture) { m_TextureWidth = texture.width; m_TextureHeight = texture.height; imagePreview.SetTexture(texture); var size = Mathf.Max(texture.width, texture.height); // The affine transformation matrix to go from tensor coordinates to image coordinates var scale = size / (float)detectorInputSize; var M = BlazeUtils.mul(BlazeUtils.TranslationMatrix(0.5f * (new Vector2(texture.width, texture.height) + new Vector2(-size, size))), BlazeUtils.ScaleMatrix(new Vector2(scale, -scale))); BlazeUtils.SampleImageAffine(texture, m_DetectorInput, M); m_HandDetectorWorker.Schedule(m_DetectorInput); var outputIdxAwaitable = (m_HandDetectorWorker.PeekOutput(0) as Tensor).ReadbackAndCloneAsync(); var outputScoreAwaitable = (m_HandDetectorWorker.PeekOutput(1) as Tensor).ReadbackAndCloneAsync(); var outputBoxAwaitable = (m_HandDetectorWorker.PeekOutput(2) as Tensor).ReadbackAndCloneAsync(); using var outputIdx = await outputIdxAwaitable; using var outputScore = await outputScoreAwaitable; using var outputBox = await outputBoxAwaitable; var scorePassesThreshold = outputScore[0] >= scoreThreshold; handPreview.SetActive(scorePassesThreshold); if (!scorePassesThreshold) return; var idx = outputIdx[0]; var anchorPosition = detectorInputSize * new float2(m_Anchors[idx, 0], m_Anchors[idx, 1]); var boxCentre_TensorSpace = anchorPosition + new float2(outputBox[0, 0, 0], outputBox[0, 0, 1]); var boxSize_TensorSpace = math.max(outputBox[0, 0, 2], outputBox[0, 0, 3]); var kp0_TensorSpace = anchorPosition + new float2(outputBox[0, 0, 4 + 2 * 0 + 0], outputBox[0, 0, 4 + 2 * 0 + 1]); var kp2_TensorSpace = anchorPosition + new float2(outputBox[0, 0, 4 + 2 * 2 + 0], outputBox[0, 0, 4 + 2 * 2 + 1]); var delta_TensorSpace = kp2_TensorSpace - kp0_TensorSpace; var up_TensorSpace = delta_TensorSpace / math.length(delta_TensorSpace); var theta = math.atan2(delta_TensorSpace.y, delta_TensorSpace.x); var rotation = 0.5f * Mathf.PI - theta; boxCentre_TensorSpace += 0.5f * boxSize_TensorSpace * up_TensorSpace; boxSize_TensorSpace *= 2.6f; var origin2 = new float2(0.5f * landmarkerInputSize, 0.5f * landmarkerInputSize); var scale2 = boxSize_TensorSpace / landmarkerInputSize; var M2 = BlazeUtils.mul(M, BlazeUtils.mul(BlazeUtils.mul(BlazeUtils.mul(BlazeUtils.TranslationMatrix(boxCentre_TensorSpace), BlazeUtils.ScaleMatrix(new float2(scale2, -scale2))), BlazeUtils.RotationMatrix(rotation)), BlazeUtils.TranslationMatrix(-origin2))); BlazeUtils.SampleImageAffine(texture, m_LandmarkerInput, M2); m_HandLandmarkerWorker.Schedule(m_LandmarkerInput); var landmarksAwaitable = (m_HandLandmarkerWorker.PeekOutput("Identity") as Tensor).ReadbackAndCloneAsync(); using var landmarks = await landmarksAwaitable; for (var i = 0; i < k_NumKeypoints; i++) { var position_ImageSpace = BlazeUtils.mul(M2, new float2(landmarks[3 * i + 0], landmarks[3 * i + 1])); Vector3 position_WorldSpace = ImageToWorld(position_ImageSpace) + new Vector3(0, 0, landmarks[3 * i + 2] / m_TextureHeight); handPreview.SetKeypoint(i, true, position_WorldSpace); } } void OnDestroy() { m_DetectAwaitable.Cancel(); } }