See axolotl config
axolotl version: 0.4.1
base_model: /workspace/medius-erebus
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: magnum-erebus-14b-v1
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-core/c2_logs_32k_llama3_qwen2_v1.2
type: sharegpt
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: sharegpt
- path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
type: sharegpt
- path: anthracite-org/nopm_claude_writing_fixed
type: sharegpt
- path: anthracite-org/kalo_opus_misc_240827
type: sharegpt
- path: anthracite-org/kalo_misc_part2
type: sharegpt
chat_template: chatml
shuffle_merged_datasets: true
default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: /workspace/data/magnum-14b-data
val_set_size: 0.0
output_dir: /workspace/data/magnum-erebus-14b-fft
sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: 14b-magnum-fft
wandb_entity:
wandb_watch:
wandb_name: v4-r2-erebus-attempt-1
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000008
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
medius-erebus-magnum
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2
Training results
Framework versions
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0
- Downloads last month
- 147
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.