tyty979812's picture
Upload tokenizer
e65b496 verified
metadata
language:
  - multilingual
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper medium nan-tw
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 16.0
          type: mozilla-foundation/common_voice_16_0
          config: nan-tw
          split: test
          args: 'config: nan-tw, split: test'
        metrics:
          - type: wer
            value: 100.17785682525566
            name: Wer

Whisper medium nan-tw

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0525
  • Wer: 100.1779

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.182 3.05 1000 0.9951 100.5780
0.0087 6.1 2000 1.0259 100.0889
0.004 9.15 3000 1.0234 100.0445
0.0002 12.2 4000 1.0484 100.1334
0.0002 15.24 5000 1.0525 100.1779

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1