tsavage68's picture
End of training
c9962e1 verified
|
raw
history blame
3.82 kB
---
license: apache-2.0
base_model: mosaicml/mpt-7b-instruct
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: mpt_1000_STEPS_1e5_rate_03_beta_DPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mpt_1000_STEPS_1e5_rate_03_beta_DPO
This model is a fine-tuned version of [mosaicml/mpt-7b-instruct](https://huggingface.co./mosaicml/mpt-7b-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6933
- Rewards/chosen: -0.0008
- Rewards/rejected: -0.0019
- Rewards/accuracies: 0.5187
- Rewards/margins: 0.0011
- Logps/rejected: -21.5638
- Logps/chosen: -20.7947
- Logits/rejected: 14.2524
- Logits/chosen: 14.2550
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6965 | 0.1 | 100 | 0.6951 | -0.0017 | 0.0013 | 0.4681 | -0.0029 | -21.5532 | -20.7977 | 14.2557 | 14.2583 |
| 0.6918 | 0.2 | 200 | 0.6942 | -0.0054 | -0.0044 | 0.5011 | -0.0010 | -21.5722 | -20.8104 | 14.2575 | 14.2601 |
| 0.6965 | 0.29 | 300 | 0.6941 | -0.0016 | -0.0010 | 0.4945 | -0.0006 | -21.5608 | -20.7975 | 14.2549 | 14.2575 |
| 0.6906 | 0.39 | 400 | 0.6946 | 0.0001 | 0.0020 | 0.4747 | -0.0019 | -21.5507 | -20.7919 | 14.2494 | 14.2520 |
| 0.6883 | 0.49 | 500 | 0.6972 | -0.0019 | 0.0050 | 0.4484 | -0.0069 | -21.5408 | -20.7986 | 14.2521 | 14.2547 |
| 0.6867 | 0.59 | 600 | 0.6969 | -0.0054 | 0.0010 | 0.4418 | -0.0064 | -21.5541 | -20.8103 | 14.2502 | 14.2528 |
| 0.6937 | 0.68 | 700 | 0.6939 | 0.0015 | 0.0020 | 0.5275 | -0.0005 | -21.5508 | -20.7871 | 14.2547 | 14.2573 |
| 0.6855 | 0.78 | 800 | 0.6933 | -0.0008 | -0.0017 | 0.5099 | 0.0009 | -21.5631 | -20.7947 | 14.2522 | 14.2548 |
| 0.6918 | 0.88 | 900 | 0.6933 | -0.0008 | -0.0019 | 0.5187 | 0.0011 | -21.5638 | -20.7947 | 14.2524 | 14.2550 |
| 0.6957 | 0.98 | 1000 | 0.6933 | -0.0008 | -0.0019 | 0.5187 | 0.0011 | -21.5638 | -20.7947 | 14.2524 | 14.2550 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.0.0+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2