tomaarsen's picture
tomaarsen HF staff
Fix broken URL
4df6915
---
language:
- en
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- acronym_identification
metrics:
- precision
- recall
- f1
widget:
- text: "here, da = direct assessment, rr = relative ranking, ds = discrete scale and cs = continuous scale."
example_title: "Uncased 1"
- text: "modifying or replacing the erasable programmable read only memory (eprom) in a phone would allow the configuration of any esn and min via software for cellular devices."
example_title: "Uncased 2"
- text: "we propose a technique called aggressive stochastic weight averaging (aswa) and an extension called norm-filtered aggressive stochastic weight averaging (naswa) which improves te stability of models over random seeds."
example_title: "Uncased 3"
- text: "the choice of the encoder and decoder modules of dnpg can be quite flexible, for instance long-short term memory networks (lstm) or convolutional neural network (cnn)."
example_title: "Uncased 4"
pipeline_tag: token-classification
co2_eq_emissions:
emissions: 31.203903222402037
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.272
hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: bert-base-uncased
model-index:
- name: SpanMarker with bert-base-uncased on Acronym Identification
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Acronym Identification
type: acronym_identification
split: validation
metrics:
- type: f1
value: 0.9198933333333332
name: F1
- type: precision
value: 0.9339397877409573
name: Precision
- type: recall
value: 0.9062631357713324
name: Recall
---
# SpanMarker with bert-base-uncased on Acronym Identification
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [Acronym Identification](https://huggingface.co./datasets/acronym_identification) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co./bert-base-uncased) as the underlying encoder. See [train.py](train.py) for the training script.
Is your data always capitalized correctly? Then consider using the cased variant of this model instead for better performance: [tomaarsen/span-marker-bert-base-acronyms](https://huggingface.co./tomaarsen/span-marker-bert-base-acronyms).
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-uncased](https://huggingface.co./bert-base-uncased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [Acronym Identification](https://huggingface.co./datasets/acronym_identification)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------|
| long | "successive convex approximation", "controlled natural language", "Conversational Question Answering" |
| short | "SODA", "CNL", "CoQA" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:--------|:----------|:-------|:-------|
| **all** | 0.9339 | 0.9063 | 0.9199 |
| long | 0.9314 | 0.8845 | 0.9074 |
| short | 0.9352 | 0.9174 | 0.9262 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-acronyms")
# Run inference
entities = model.predict("compression algorithms like principal component analysis (pca) can reduce noise and complexity.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-acronyms")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-uncased-acronyms-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 4 | 32.3372 | 170 |
| Entities per sentence | 0 | 2.6775 | 24 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.3120 | 200 | 0.0097 | 0.8999 | 0.8731 | 0.8863 | 0.9718 |
| 0.6240 | 400 | 0.0075 | 0.9163 | 0.8995 | 0.9078 | 0.9769 |
| 0.9360 | 600 | 0.0076 | 0.9079 | 0.9153 | 0.9116 | 0.9773 |
| 1.2480 | 800 | 0.0069 | 0.9267 | 0.9006 | 0.9135 | 0.9778 |
| 1.5601 | 1000 | 0.0065 | 0.9268 | 0.9044 | 0.9154 | 0.9782 |
| 1.8721 | 1200 | 0.0065 | 0.9279 | 0.9061 | 0.9168 | 0.9787 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.031 kg of CO2
- **Hours Used**: 0.272 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.9.16
- SpanMarker: 1.3.1.dev
- Transformers: 4.30.0
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.0
- Tokenizers: 0.13.2
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->