SpanMarker with xlm-roberta-base

Trained on various nordic lang. datasets: see https://huggingface.co./datasets/tollefj/nordic-ner

This is a SpanMarker model trained on the norne dataset that can be used for Named Entity Recognition. This SpanMarker model uses FacebookAI/xlm-roberta-base as the underlying encoder.

Model Details

Model Description

  • Model Type: SpanMarker
  • Encoder: FacebookAI/xlm-roberta-base
  • Maximum Sequence Length: 256 tokens
  • Maximum Entity Length: 8 words
  • Training Dataset: norne
  • Language: en
  • License: cc-by-sa-4.0

Model Sources

Model Labels

Label Examples
LOC "Gran", "Leicestershire", "Den tyske antarktisekspedisjonen"
MISC "socialdemokratiske", "nationalist", "Living Legend"
ORG "Stabæk", "Samlaget", "Marillion"
PER "Fish", "Dmitrij Medvedev", "Guru Ardjan Dev"

Evaluation

Metrics

Label Precision Recall F1
all 0.9218 0.9146 0.9182
LOC 0.9284 0.9433 0.9358
MISC 0.6515 0.6047 0.6272
ORG 0.8951 0.8547 0.8745
PER 0.9513 0.9526 0.9520

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("Roddarn blir proffs efter OS.")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 1 12.8175 331
Entities per sentence 0 1.0055 54

Training Hyperparameters

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training Results

Epoch Step Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy
0.5711 3000 0.0146 0.8650 0.8725 0.8687 0.9722
1.1422 6000 0.0123 0.8994 0.8920 0.8957 0.9778
1.7133 9000 0.0101 0.9184 0.8984 0.9083 0.9805
2.2844 12000 0.0101 0.9198 0.9110 0.9154 0.9818
2.8555 15000 0.0089 0.9245 0.9150 0.9197 0.9830

Framework Versions

  • Python: 3.12.2
  • SpanMarker: 1.5.0
  • Transformers: 4.38.2
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
18
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tollefj/nordic-ner

Finetuned
(2693)
this model

Dataset used to train tollefj/nordic-ner

Evaluation results