timm
/

Image Classification
timm
PyTorch
Safetensors

Model card for mobilenetv3_large_100.ra_in1k

A MobileNet-v3 image classification model. Trained on ImageNet-1k in timm using recipe template described below.

Recipe details:

  • RandAugment RA recipe. Inspired by and evolved from EfficientNet RandAugment recipes. Published as B recipe in ResNet Strikes Back.
  • RMSProp (TF 1.0 behaviour) optimizer, EMA weight averaging
  • Step (exponential decay w/ staircase) LR schedule with warmup

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('mobilenetv3_large_100.ra_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mobilenetv3_large_100.ra_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 16, 112, 112])
    #  torch.Size([1, 24, 56, 56])
    #  torch.Size([1, 40, 28, 28])
    #  torch.Size([1, 112, 14, 14])
    #  torch.Size([1, 960, 7, 7])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mobilenetv3_large_100.ra_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 960, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Explore the dataset and runtime metrics of this model in timm model results.

Citation

@inproceedings{howard2019searching,
  title={Searching for mobilenetv3},
  author={Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and Vasudevan, Vijay and others},
  booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
  pages={1314--1324},
  year={2019}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@inproceedings{wightman2021resnet,
  title={ResNet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
Downloads last month
1,850,936
Safetensors
Model size
5.51M params
Tensor type
F32
Β·
Inference API
Drag image file here or click to browse from your device

Model tree for timm/mobilenetv3_large_100.ra_in1k

Finetunes
2 models
Quantizations
1 model

Dataset used to train timm/mobilenetv3_large_100.ra_in1k

Spaces using timm/mobilenetv3_large_100.ra_in1k 4

Collections including timm/mobilenetv3_large_100.ra_in1k