Nguyen Tien
vuihocrnd/teacher-status-van-tiny-256
c2f2911
metadata
license: apache-2.0
base_model: Visual-Attention-Network/van-tiny
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: teacher-status-van-tiny-256
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9831460674157303
          - name: Recall
            type: recall
            value: 0.9789473684210527
          - name: Precision
            type: precision
            value: 0.9893617021276596

teacher-status-van-tiny-256

This model is a fine-tuned version of Visual-Attention-Network/van-tiny on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0988
  • Accuracy: 0.9831
  • F1 Score: 0.9841
  • Recall: 0.9789
  • Precision: 0.9894

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Recall Precision
0.6928 0.96 12 0.6904 0.6685 0.7631 1.0 0.6169
0.6893 2.0 25 0.6683 0.5393 0.6985 1.0 0.5367
0.6726 2.96 37 0.5704 0.5843 0.7197 1.0 0.5621
0.5295 4.0 50 0.4148 0.9213 0.9263 0.9263 0.9263
0.4745 4.96 62 0.3108 0.9382 0.9430 0.9579 0.9286
0.4206 6.0 75 0.2301 0.9438 0.9474 0.9474 0.9474
0.3898 6.96 87 0.1820 0.9494 0.9519 0.9368 0.9674
0.3153 8.0 100 0.1545 0.9494 0.9538 0.9789 0.93
0.3077 8.96 112 0.1521 0.9607 0.9622 0.9368 0.9889
0.3048 10.0 125 0.1331 0.9607 0.9626 0.9474 0.9783
0.3004 10.96 137 0.1314 0.9607 0.9634 0.9684 0.9583
0.2839 12.0 150 0.1272 0.9607 0.9622 0.9368 0.9889
0.286 12.96 162 0.1189 0.9607 0.9622 0.9368 0.9889
0.2473 14.0 175 0.0977 0.9719 0.9733 0.9579 0.9891
0.2774 14.96 187 0.0988 0.9831 0.9841 0.9789 0.9894
0.2541 16.0 200 0.0969 0.9719 0.9733 0.9579 0.9891
0.2383 16.96 212 0.1042 0.9719 0.9733 0.9579 0.9891
0.2552 18.0 225 0.1081 0.9719 0.9733 0.9579 0.9891
0.2223 18.96 237 0.1150 0.9663 0.9681 0.9579 0.9785
0.2561 20.0 250 0.1234 0.9551 0.9574 0.9474 0.9677
0.2462 20.96 262 0.1178 0.9607 0.9630 0.9579 0.9681
0.2294 22.0 275 0.1262 0.9382 0.9430 0.9579 0.9286
0.2296 22.96 287 0.1290 0.9438 0.9479 0.9579 0.9381
0.2224 24.0 300 0.1153 0.9494 0.9529 0.9579 0.9479
0.2205 24.96 312 0.1150 0.9494 0.9529 0.9579 0.9479
0.2169 26.0 325 0.1121 0.9551 0.9574 0.9474 0.9677
0.2212 26.96 337 0.1145 0.9494 0.9529 0.9579 0.9479
0.2188 28.0 350 0.1131 0.9494 0.9524 0.9474 0.9574
0.2015 28.8 360 0.1130 0.9494 0.9524 0.9474 0.9574

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0