t5-large_boolq_dense_epochs-5

This model is a fine-tuned version of t5-large on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3715
  • Accuracy: 0.8462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6792 0.17 50 0.6652 0.6217
0.66 0.34 100 0.6595 0.6220
0.6614 0.51 150 0.6548 0.6232
0.636 0.68 200 0.6122 0.6985
0.4882 0.85 250 0.4702 0.7847
0.5068 1.02 300 0.4639 0.7862
0.3332 1.19 350 0.5297 0.7908
0.4296 1.36 400 0.3955 0.8373
0.356 1.53 450 0.4013 0.8410
0.3227 1.7 500 0.3715 0.8462
0.3516 1.87 550 0.3724 0.8428
0.2169 2.04 600 0.3906 0.8477
0.2199 2.21 650 0.4061 0.8572
0.1969 2.37 700 0.4351 0.8550
0.2713 2.54 750 0.5411 0.8584
0.2458 2.71 800 0.3924 0.8627
0.2134 2.88 850 0.3973 0.8630
0.1636 3.05 900 0.4933 0.8590
0.1108 3.22 950 0.9926 0.8621
0.1433 3.39 1000 0.6679 0.8602

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thrunlab/t5-large_boolq_dense_epochs-5

Base model

google-t5/t5-large
Finetuned
(75)
this model

Dataset used to train thrunlab/t5-large_boolq_dense_epochs-5

Evaluation results