thiagobarbosa's picture
End of training
890ab67 verified
metadata
language:
  - pt
license: apache-2.0
base_model: openai/whisper-base
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Base using Common Voice 16 (pt)
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Mozilla Common Voices - 16.0 - Portuguese
          type: mozilla-foundation/common_voice_16_0
          config: pt
          split: test
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 26.192630898513254

Whisper Base using Common Voice 16 (pt)

This model is a fine-tuned version of openai/whisper-base on the Mozilla Common Voices - 16.0 - Portuguese dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4574
  • Wer: 26.1926
  • Wer Normalized: 20.0029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 7000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Wer Normalized
0.4883 0.74 1000 0.3803 28.0317 21.8327
0.2659 1.48 2000 0.3677 26.3688 20.1666
0.1251 2.22 3000 0.3730 26.3752 20.4620
0.1071 2.96 4000 0.3867 25.5026 19.5470
0.0523 3.7 5000 0.4148 25.7094 19.6851
0.02 4.44 6000 0.4491 25.6803 19.5759
0.0134 5.18 7000 0.4574 26.1926 20.0029

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0