thefcraft's picture
Update README.md
a32b701
---
datasets:
- thefcraft/civitai-stable-diffusion-337k
language:
- en
pipeline_tag: text-generation
---
### github
https://github.com/thefcraft/prompt-generator-stable-diffusion/tree/main
### How to use
```python
import pickle
import random
import numpy as np
import os
import wget
from zipfile import ZipFile
def download_model(force = False):
if force == True: print('downloading model file size is 108 MB so it may take some time to complete...')
try:
url = "https://huggingface.co./thefcraft/prompt-generator-stable-diffusion/resolve/main/models.pickle.zip"
if force == True:
with open("models.pickle.zip", 'w'): pass
wget.download(url, "models.pickle.zip")
if not os.path.exists('models.pickle.zip'): wget.download(url, "models.pickle.zip")
print('Download zip file now extracting model')
with ZipFile("models.pickle.zip", 'r') as zObject: zObject.extractall()
print('extracted model .. now all done')
return True
except:
if force == False: return download_model(force=True)
print('Something went wrong\ndownload model via link: `https://huggingface.co./thefcraft/prompt-generator-stable-diffusion/tree/main`')
try: os.chdir(os.path.abspath(os.path.dirname(__file__)))
except: pass
if not os.path.exists('models.pickle'): download_model()
with open('models.pickle', 'rb')as f:
models = pickle.load(f)
LORA_TOKEN = ''#'<|>LORA_TOKEN<|>'
# WEIGHT_TOKEN = '<|>WEIGHT_TOKEN<|>'
NOT_SPLIT_TOKEN = '<|>NOT_SPLIT_TOKEN<|>'
def sample_next(ctx:str,model,k):
ctx = ', '.join(ctx.split(', ')[-k:])
if model.get(ctx) is None:
return " "
possible_Chars = list(model[ctx].keys())
possible_values = list(model[ctx].values())
# print(possible_Chars)
# print(possible_values)
return np.random.choice(possible_Chars,p=possible_values)
def generateText(model, minLen=100, size=5):
keys = list(model.keys())
starting_sent = random.choice(keys)
k = len(random.choice(keys).split(', '))
sentence = starting_sent
ctx = ', '.join(starting_sent.split(', ')[-k:])
while True:
next_prediction = sample_next(ctx,model,k)
sentence += f", {next_prediction}"
ctx = ', '.join(sentence.split(', ')[-k:])
# if sentence.count('\n')>size: break
if '\n' in sentence: break
sentence = sentence.replace(NOT_SPLIT_TOKEN, ', ')
# sentence = re.sub(WEIGHT_TOKEN.replace('|', '\|'), lambda match: f":{random.randint(0,2)}.{random.randint(0,9)}", sentence)
# sentence = sentence.replace(":0.0", ':0.1')
# return sentence
prompt = sentence.split('\n')[0]
if len(prompt)<minLen:
prompt = generateText(model, minLen, size=1)[0]
size = size-1
if size == 0: return [prompt]
output = []
for i in range(size+1):
prompt = generateText(model, minLen, size=1)[0]
output.append(prompt)
return output
if __name__ == "__main__":
for model in models: # models = [(model, neg_model), (nsfw, neg_nsfw), (sfw, neg_sfw)]
text = generateText(model[0], minLen=300, size=5)
text_neg = generateText(model[1], minLen=300, size=5)
# print('\n'.join(text))
for i in range(len(text)):
print(text[i])
# print('negativePrompt:')
print(text_neg[i])
print('----------------------------------------------------------------')
print('********************************************************************************************************************************************************')
```