|
--- |
|
datasets: |
|
- thefcraft/civitai-stable-diffusion-337k |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
### github |
|
https://github.com/thefcraft/prompt-generator-stable-diffusion/tree/main |
|
|
|
### How to use |
|
```python |
|
import pickle |
|
import random |
|
import numpy as np |
|
|
|
import os |
|
import wget |
|
from zipfile import ZipFile |
|
|
|
|
|
def download_model(force = False): |
|
if force == True: print('downloading model file size is 108 MB so it may take some time to complete...') |
|
try: |
|
url = "https://huggingface.co./thefcraft/prompt-generator-stable-diffusion/resolve/main/models.pickle.zip" |
|
if force == True: |
|
with open("models.pickle.zip", 'w'): pass |
|
wget.download(url, "models.pickle.zip") |
|
if not os.path.exists('models.pickle.zip'): wget.download(url, "models.pickle.zip") |
|
print('Download zip file now extracting model') |
|
with ZipFile("models.pickle.zip", 'r') as zObject: zObject.extractall() |
|
print('extracted model .. now all done') |
|
return True |
|
except: |
|
if force == False: return download_model(force=True) |
|
print('Something went wrong\ndownload model via link: `https://huggingface.co./thefcraft/prompt-generator-stable-diffusion/tree/main`') |
|
try: os.chdir(os.path.abspath(os.path.dirname(__file__))) |
|
except: pass |
|
if not os.path.exists('models.pickle'): download_model() |
|
|
|
with open('models.pickle', 'rb')as f: |
|
models = pickle.load(f) |
|
|
|
LORA_TOKEN = ''#'<|>LORA_TOKEN<|>' |
|
# WEIGHT_TOKEN = '<|>WEIGHT_TOKEN<|>' |
|
NOT_SPLIT_TOKEN = '<|>NOT_SPLIT_TOKEN<|>' |
|
|
|
def sample_next(ctx:str,model,k): |
|
|
|
ctx = ', '.join(ctx.split(', ')[-k:]) |
|
if model.get(ctx) is None: |
|
return " " |
|
possible_Chars = list(model[ctx].keys()) |
|
possible_values = list(model[ctx].values()) |
|
|
|
# print(possible_Chars) |
|
# print(possible_values) |
|
|
|
return np.random.choice(possible_Chars,p=possible_values) |
|
|
|
def generateText(model, minLen=100, size=5): |
|
keys = list(model.keys()) |
|
starting_sent = random.choice(keys) |
|
k = len(random.choice(keys).split(', ')) |
|
|
|
sentence = starting_sent |
|
ctx = ', '.join(starting_sent.split(', ')[-k:]) |
|
|
|
while True: |
|
next_prediction = sample_next(ctx,model,k) |
|
sentence += f", {next_prediction}" |
|
ctx = ', '.join(sentence.split(', ')[-k:]) |
|
# if sentence.count('\n')>size: break |
|
if '\n' in sentence: break |
|
sentence = sentence.replace(NOT_SPLIT_TOKEN, ', ') |
|
# sentence = re.sub(WEIGHT_TOKEN.replace('|', '\|'), lambda match: f":{random.randint(0,2)}.{random.randint(0,9)}", sentence) |
|
# sentence = sentence.replace(":0.0", ':0.1') |
|
# return sentence |
|
|
|
prompt = sentence.split('\n')[0] |
|
if len(prompt)<minLen: |
|
prompt = generateText(model, minLen, size=1)[0] |
|
|
|
size = size-1 |
|
if size == 0: return [prompt] |
|
output = [] |
|
for i in range(size+1): |
|
prompt = generateText(model, minLen, size=1)[0] |
|
output.append(prompt) |
|
|
|
return output |
|
if __name__ == "__main__": |
|
for model in models: # models = [(model, neg_model), (nsfw, neg_nsfw), (sfw, neg_sfw)] |
|
text = generateText(model[0], minLen=300, size=5) |
|
text_neg = generateText(model[1], minLen=300, size=5) |
|
|
|
# print('\n'.join(text)) |
|
for i in range(len(text)): |
|
print(text[i]) |
|
# print('negativePrompt:') |
|
print(text_neg[i]) |
|
print('----------------------------------------------------------------') |
|
print('********************************************************************************************************************************************************') |
|
|
|
|
|
``` |