morriszms's picture
Upload folder using huggingface_hub
eb4c3ed verified
metadata
language:
  - en
license: mit
tags:
  - moe
  - TensorBlock
  - GGUF
base_model: TomGrc/FusionNet_7Bx2_MoE_14B
model-index:
  - name: FusionNet_7Bx2_MoE_14B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 73.55
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 88.84
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.68
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 69.6
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 88.16
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.66
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

TomGrc/FusionNet_7Bx2_MoE_14B - GGUF

This repo contains GGUF format model files for TomGrc/FusionNet_7Bx2_MoE_14B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
FusionNet_7Bx2_MoE_14B-Q2_K.gguf Q2_K 4.761 GB smallest, significant quality loss - not recommended for most purposes
FusionNet_7Bx2_MoE_14B-Q3_K_S.gguf Q3_K_S 5.588 GB very small, high quality loss
FusionNet_7Bx2_MoE_14B-Q3_K_M.gguf Q3_K_M 6.206 GB very small, high quality loss
FusionNet_7Bx2_MoE_14B-Q3_K_L.gguf Q3_K_L 6.730 GB small, substantial quality loss
FusionNet_7Bx2_MoE_14B-Q4_0.gguf Q4_0 7.281 GB legacy; small, very high quality loss - prefer using Q3_K_M
FusionNet_7Bx2_MoE_14B-Q4_K_S.gguf Q4_K_S 7.342 GB small, greater quality loss
FusionNet_7Bx2_MoE_14B-Q4_K_M.gguf Q4_K_M 7.783 GB medium, balanced quality - recommended
FusionNet_7Bx2_MoE_14B-Q5_0.gguf Q5_0 8.874 GB legacy; medium, balanced quality - prefer using Q4_K_M
FusionNet_7Bx2_MoE_14B-Q5_K_S.gguf Q5_K_S 8.874 GB large, low quality loss - recommended
FusionNet_7Bx2_MoE_14B-Q5_K_M.gguf Q5_K_M 9.133 GB large, very low quality loss - recommended
FusionNet_7Bx2_MoE_14B-Q6_K.gguf Q6_K 10.567 GB very large, extremely low quality loss
FusionNet_7Bx2_MoE_14B-Q8_0.gguf Q8_0 13.686 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/FusionNet_7Bx2_MoE_14B-GGUF --include "FusionNet_7Bx2_MoE_14B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/FusionNet_7Bx2_MoE_14B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'