See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- bab283e818c97851_train_data.json
ds_type: json
format: custom
path: bab283e818c97851_train_data.json
type:
field: null
field_input: null
field_instruction: context
field_output: level_2
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: 3
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
group_by_length: false
hub_model_id: taopanda/2c157ea5-df82-4f8e-a01c-eed7d3c6cb1d
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
output_dir: ./outputs/out/taopanda-2_a4cfd74d-319f-41fe-90ca-a0914a9d703e
pad_to_sequence_len: false
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
seed: 11975
sequence_len: 1024
special_tokens: null
strict: false
tf32: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-2_a4cfd74d-319f-41fe-90ca-a0914a9d703e
wandb_project: subnet56
wandb_runid: taopanda-2_a4cfd74d-319f-41fe-90ca-a0914a9d703e
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
2c157ea5-df82-4f8e-a01c-eed7d3c6cb1d
This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.7507
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 11975
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.9292 | 0.0002 | 1 | 11.9319 |
11.7579 | 0.3334 | 1716 | 11.7547 |
11.7407 | 0.6668 | 3432 | 11.7507 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for taopanda/2c157ea5-df82-4f8e-a01c-eed7d3c6cb1d
Base model
katuni4ka/tiny-random-qwen1.5-moe