YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co./docs/hub/model-cards#model-card-metadata)
dant5-large
language: - da language_bcp47: - da - da-bornholm - da-synnejyl tags: - t5 license: cc-by-4.0 datasets: - dagw widget: - text: "Aarhus er Danmarks ." co2_eq_emissions: training_type: "pretraining" geographical_location: "Copenhagen, Denmark" hardware_used: "4 A100 GPUs, 508 training hours" emissions: 132080
dant5-large
is a 770M parameter model with architecture identical to t5-large
. Training details are given in the paper Training a T5 Using Lab-sized Resources. It was trained for 10 epochs on the Danigh GigaWord Corpus (official website, paper).
To use the model
from transformers import AutoTokenizer, T5ForConditionalGeneration
model_name = "strombergnlp/dant5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
original_text = "Aarhus er Danmarks <extra_id_0> landets ældste. Under navnet Aros, som betyder å-munding, optræder den i skriftlige kilder i 900-tallet, men <extra_id_1> historie tilbage til 700-tallet.<extra_id_2>"
original_label = "<extra_id_0> næststørste by og en af <extra_id_1> arkæologiske fund fører dens <extra_id_2>"
input_ids = tokenizer(original_text, return_tensors="pt").input_ids
labels = tokenizer(original_label, return_tensors="pt").input_ids
loss = model(input_ids=input_ids, labels=labels).loss
print(f"Original text: {original_text}")
print(f"Original label: {original_label}")
print(f"Loss for the original label is {loss.item()}")
sequence_ids = model.generate(input_ids)
sequences = tokenizer.batch_decode(sequence_ids)
print(f"A sample generated continuation: ")
print(sequences[0])
You should see output similar to:
Original text: Aarhus er Danmarks <extra_id_0> landets ældste. Under navnet Aros, som betyder å-munding, optræder den i skriftlige kilder i 900-tallet, men <extra_id_1> historie tilbage til 700-tallet.<extra_id_2>
Original label: <extra_id_0> næststørste by og en af <extra_id_1> arkæologiske fund fører dens <extra_id_2>
Loss for the original label is 4.174272537231445
A sample generated continuation:
<pad><extra_id_0> ældste by og<extra_id_1> har sin<extra_id_2> Se også<extra_id_3></s>
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.