Visualize in Weights & Biases

Meta-Llama-3-70B-Instruct

This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B-Instruct on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2884
  • Rewards/chosen: -0.0888
  • Rewards/rejected: -0.1138
  • Rewards/accuracies: 0.6132
  • Rewards/margins: 0.0250
  • Logps/rejected: -1.1382
  • Logps/chosen: -0.8884
  • Logits/rejected: -0.0033
  • Logits/chosen: 0.2012
  • Nll Loss: 1.2075
  • Log Odds Ratio: -0.6278
  • Log Odds Chosen: 0.3768

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.2483 0.9999 3555 1.2884 -0.0888 -0.1138 0.6132 0.0250 -1.1382 -0.8884 -0.0033 0.2012 1.2075 -0.6278 0.3768

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.0
  • Pytorch 2.2.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for statking/Meta-Llama-3-70B-Instruct

Adapter
(18)
this model

Dataset used to train statking/Meta-Llama-3-70B-Instruct