SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-2")
# Run inference
sentences = [
'What is the boiling point of water at sea level?',
'What is the melting point of ice at sea level?',
'Can you recommend a good hotel nearby?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9342 |
cosine_accuracy_threshold | 0.7817 |
cosine_f1 | 0.9279 |
cosine_f1_threshold | 0.7817 |
cosine_precision | 0.9035 |
cosine_recall | 0.9537 |
cosine_ap | 0.9587 |
dot_accuracy | 0.9342 |
dot_accuracy_threshold | 0.7817 |
dot_f1 | 0.9279 |
dot_f1_threshold | 0.7817 |
dot_precision | 0.9035 |
dot_recall | 0.9537 |
dot_ap | 0.9587 |
manhattan_accuracy | 0.9218 |
manhattan_accuracy_threshold | 10.0315 |
manhattan_f1 | 0.9156 |
manhattan_f1_threshold | 10.4594 |
manhattan_precision | 0.8803 |
manhattan_recall | 0.9537 |
manhattan_ap | 0.957 |
euclidean_accuracy | 0.9342 |
euclidean_accuracy_threshold | 0.6608 |
euclidean_f1 | 0.9279 |
euclidean_f1_threshold | 0.6608 |
euclidean_precision | 0.9035 |
euclidean_recall | 0.9537 |
euclidean_ap | 0.9587 |
max_accuracy | 0.9342 |
max_accuracy_threshold | 10.0315 |
max_f1 | 0.9279 |
max_f1_threshold | 10.4594 |
max_precision | 0.9035 |
max_recall | 0.9537 |
max_ap | 0.9587 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9342 |
cosine_accuracy_threshold | 0.7817 |
cosine_f1 | 0.9279 |
cosine_f1_threshold | 0.7817 |
cosine_precision | 0.9035 |
cosine_recall | 0.9537 |
cosine_ap | 0.9587 |
dot_accuracy | 0.9342 |
dot_accuracy_threshold | 0.7817 |
dot_f1 | 0.9279 |
dot_f1_threshold | 0.7817 |
dot_precision | 0.9035 |
dot_recall | 0.9537 |
dot_ap | 0.9587 |
manhattan_accuracy | 0.9218 |
manhattan_accuracy_threshold | 10.0315 |
manhattan_f1 | 0.9156 |
manhattan_f1_threshold | 10.4594 |
manhattan_precision | 0.8803 |
manhattan_recall | 0.9537 |
manhattan_ap | 0.957 |
euclidean_accuracy | 0.9342 |
euclidean_accuracy_threshold | 0.6608 |
euclidean_f1 | 0.9279 |
euclidean_f1_threshold | 0.6608 |
euclidean_precision | 0.9035 |
euclidean_recall | 0.9537 |
euclidean_ap | 0.9587 |
max_accuracy | 0.9342 |
max_accuracy_threshold | 10.0315 |
max_f1 | 0.9279 |
max_f1_threshold | 10.4594 |
max_precision | 0.9035 |
max_recall | 0.9537 |
max_ap | 0.9587 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 971 training samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type int string string details - 0: ~48.61%
- 1: ~51.39%
- min: 6 tokens
- mean: 10.82 tokens
- max: 22 tokens
- min: 4 tokens
- mean: 10.12 tokens
- max: 22 tokens
- Samples:
label sentence1 sentence2 1
How many bones are in the human body?
Total number of bones in an adult human body
0
What is the largest lake in North America?
What is the largest river in North America?
0
What is the capital of New Zealand?
What is the capital of Australia?
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 243 evaluation samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type int string string details - 0: ~55.56%
- 1: ~44.44%
- min: 6 tokens
- mean: 10.55 tokens
- max: 22 tokens
- min: 4 tokens
- mean: 10.09 tokens
- max: 20 tokens
- Samples:
label sentence1 sentence2 1
What are the different types of renewable energy?
What are the various forms of renewable energy?
1
Who discovered gravity?
Gravity discoverer
0
Can you help me understand this report?
Can you help me write this report?
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2learning_rate
: 3e-06weight_decay
: 0.01num_train_epochs
: 15lr_scheduler_type
: reduce_lr_on_plateauwarmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: reduce_lr_on_plateaulr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|
0 | 0 | - | 0.6426 | - |
0.9677 | 15 | 3.1942 | 0.7846 | - |
2.0 | 31 | 2.2259 | 0.8691 | - |
2.9677 | 46 | 1.8185 | 0.9075 | - |
4.0 | 62 | 1.6203 | 0.9240 | - |
4.9677 | 77 | 1.4360 | 0.9308 | - |
6.0 | 93 | 1.3889 | 0.9351 | - |
6.9677 | 108 | 1.2959 | 0.9381 | - |
8.0 | 124 | 1.1657 | 0.9425 | - |
8.9677 | 139 | 1.1238 | 0.9439 | - |
10.0 | 155 | 1.0300 | 0.9473 | - |
10.9677 | 170 | 0.9543 | 0.9503 | - |
12.0 | 186 | 0.8371 | 0.9540 | - |
12.9677 | 201 | 0.8020 | 0.9558 | - |
14.0 | 217 | 0.7933 | 0.9579 | - |
14.5161 | 225 | 0.7888 | 0.9587 | 0.9587 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for srikarvar/multilingual-e5-small-pairclass-2
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy on pair class devself-reported0.934
- Cosine Accuracy Threshold on pair class devself-reported0.782
- Cosine F1 on pair class devself-reported0.928
- Cosine F1 Threshold on pair class devself-reported0.782
- Cosine Precision on pair class devself-reported0.904
- Cosine Recall on pair class devself-reported0.954
- Cosine Ap on pair class devself-reported0.959
- Dot Accuracy on pair class devself-reported0.934
- Dot Accuracy Threshold on pair class devself-reported0.782
- Dot F1 on pair class devself-reported0.928