simpletuner-lora-spindrift

This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

photo of a modern architectural interior event space at dusk

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 25
  • Sampler: None
  • Seed: 42
  • Resolution: 1216x832

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
photo of a modern architectural interior event space at dusk
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 1000
  • Learning rate: 1e-05
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: Pure BF16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LoRA Rank: 64
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

spindrift-dataset-512

  • Repeats: 25
  • Total number of images: 29
  • Total number of aspect buckets: 6
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

spindrift-dataset-1024

  • Repeats: 25
  • Total number of images: 32
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

spindrift-dataset-512-crop

  • Repeats: 25
  • Total number of images: 32
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

spindrift-dataset-1024-crop

  • Repeats: 25
  • Total number of images: 32
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'spawn99/simpletuner-lora-spindrift'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "photo of a modern architectural interior event space at dusk"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=25,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1216,
    height=832,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
4
Inference API
Examples

Model tree for spawn99/simpletuner-lora-spindrift

Adapter
(12161)
this model