Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
from diffusers import CogVideoXDPMScheduler | |
from pipeline_rgba import CogVideoXPipeline | |
from diffusers.utils import export_to_video | |
import argparse | |
import numpy as np | |
from rgba_utils import * | |
def main(args): | |
# 1. load pipeline | |
pipe = CogVideoXPipeline.from_pretrained(args.model_path, torch_dtype=torch.bfloat16) | |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
pipe.enable_sequential_cpu_offload() | |
pipe.vae.enable_slicing() | |
pipe.vae.enable_tiling() | |
# 2. define prompt and arguments | |
pipeline_args = { | |
"prompt": args.prompt, | |
"guidance_scale": args.guidance_scale, | |
"num_inference_steps": args.num_inference_steps, | |
"height": args.height, | |
"width": args.width, | |
"num_frames": args.num_frames, | |
"output_type": "latent", | |
"use_dynamic_cfg":True, | |
} | |
# 3. prepare rgbx utils | |
# breakpoint() | |
seq_length = 2 * ( | |
(args.height // pipe.vae_scale_factor_spatial // 2) | |
* (args.width // pipe.vae_scale_factor_spatial // 2) | |
* ((args.num_frames - 1) // pipe.vae_scale_factor_temporal + 1) | |
) | |
# seq_length = 35100 | |
prepare_for_rgba_inference( | |
pipe.transformer, | |
rgba_weights_path=args.lora_path, | |
device="cuda", | |
dtype=torch.bfloat16, | |
text_length=226, | |
seq_length=seq_length, # this is for the creation of attention mask. | |
) | |
# 4. run inference | |
generator = torch.manual_seed(args.seed) if args.seed else None | |
frames_latents = pipe(**pipeline_args, generator=generator).frames | |
frames_latents_rgb, frames_latents_alpha = frames_latents.chunk(2, dim=1) | |
frames_rgb = decode_latents(pipe, frames_latents_rgb) | |
frames_alpha = decode_latents(pipe, frames_latents_alpha) | |
pooled_alpha = np.max(frames_alpha, axis=-1, keepdims=True) | |
frames_alpha_pooled = np.repeat(pooled_alpha, 3, axis=-1) | |
premultiplied_rgb = frames_rgb * frames_alpha_pooled | |
if os.path.exists(args.output_path) == False: | |
os.makedirs(args.output_path) | |
export_to_video(premultiplied_rgb[0], os.path.join(args.output_path, "rgb.mp4"), fps=args.fps) | |
export_to_video(frames_alpha[0], os.path.join(args.output_path, "alpha.mp4"), fps=args.fps) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Generate a video from a text prompt") | |
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated") | |
parser.add_argument("--lora_path", type=str, default="/hpc2hdd/home/lwang592/projects/CogVideo/sat/outputs/training/ckpts-5b-attn_rebias-partial_lora-8gpu-wo_t2a/lora-rgba-12-21-19-11/5000/rgba_lora.safetensors", help="The path of the LoRA weights to be used") | |
parser.add_argument( | |
"--model_path", type=str, default="THUDM/CogVideoX-5B", help="Path of the pre-trained model use" | |
) | |
parser.add_argument("--output_path", type=str, default="./output", help="The path save generated video") | |
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance") | |
parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps") | |
parser.add_argument("--num_frames", type=int, default=49, help="Number of steps for the inference process") | |
parser.add_argument("--width", type=int, default=720, help="Number of steps for the inference process") | |
parser.add_argument("--height", type=int, default=480, help="Number of steps for the inference process") | |
parser.add_argument("--fps", type=int, default=8, help="Number of steps for the inference process") | |
parser.add_argument("--seed", type=int, default=None, help="The seed for reproducibility") | |
args = parser.parse_args() | |
main(args) |