wileewang commited on
Commit
7dc9494
·
verified ·
1 Parent(s): f5d571c

Upload 6 files

Browse files
CogVideoX/README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Getting Started
2
+
3
+ Download the corresponding pre-trained LoRA weights from the [model zoo](https://github.com/lwang592/TransPixar/README.md##model-zoo).
4
+
5
+ ## Inference
6
+
7
+ To generate the RGBA video, run:
8
+
9
+ ```bash
10
+ python cli.py \
11
+ --lora_path /path/to/lora \
12
+ --prompt "..." \
13
+ ```
14
+
15
+ This command generates the RGB and Alpha videos simultaneously and saves them. Specifically, the RGB video is saved in its premultiplied form. To blend this video with any background image, you can simply use the following formula:
16
+
17
+ ```python
18
+ com = rgb + (1 - alpha) * bgr
19
+ ```
CogVideoX/cli.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from diffusers import CogVideoXDPMScheduler
4
+ from pipeline_rgba import CogVideoXPipeline
5
+ from diffusers.utils import export_to_video
6
+ import argparse
7
+ import numpy as np
8
+ from rgba_utils import *
9
+
10
+ def main(args):
11
+ # 1. load pipeline
12
+ pipe = CogVideoXPipeline.from_pretrained(args.model_path, torch_dtype=torch.bfloat16)
13
+ pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
14
+ pipe.enable_sequential_cpu_offload()
15
+ pipe.vae.enable_slicing()
16
+ pipe.vae.enable_tiling()
17
+
18
+
19
+ # 2. define prompt and arguments
20
+ pipeline_args = {
21
+ "prompt": args.prompt,
22
+ "guidance_scale": args.guidance_scale,
23
+ "num_inference_steps": args.num_inference_steps,
24
+ "height": args.height,
25
+ "width": args.width,
26
+ "num_frames": args.num_frames,
27
+ "output_type": "latent",
28
+ "use_dynamic_cfg":True,
29
+ }
30
+
31
+ # 3. prepare rgbx utils
32
+ # breakpoint()
33
+ seq_length = 2 * (
34
+ (args.height // pipe.vae_scale_factor_spatial // 2)
35
+ * (args.width // pipe.vae_scale_factor_spatial // 2)
36
+ * ((args.num_frames - 1) // pipe.vae_scale_factor_temporal + 1)
37
+ )
38
+ # seq_length = 35100
39
+
40
+ prepare_for_rgba_inference(
41
+ pipe.transformer,
42
+ rgba_weights_path=args.lora_path,
43
+ device="cuda",
44
+ dtype=torch.bfloat16,
45
+ text_length=226,
46
+ seq_length=seq_length, # this is for the creation of attention mask.
47
+ )
48
+
49
+ # 4. run inference
50
+ generator = torch.manual_seed(args.seed) if args.seed else None
51
+ frames_latents = pipe(**pipeline_args, generator=generator).frames
52
+
53
+ frames_latents_rgb, frames_latents_alpha = frames_latents.chunk(2, dim=1)
54
+
55
+ frames_rgb = decode_latents(pipe, frames_latents_rgb)
56
+ frames_alpha = decode_latents(pipe, frames_latents_alpha)
57
+
58
+
59
+ pooled_alpha = np.max(frames_alpha, axis=-1, keepdims=True)
60
+ frames_alpha_pooled = np.repeat(pooled_alpha, 3, axis=-1)
61
+ premultiplied_rgb = frames_rgb * frames_alpha_pooled
62
+
63
+ if os.path.exists(args.output_path) == False:
64
+ os.makedirs(args.output_path)
65
+
66
+ export_to_video(premultiplied_rgb[0], os.path.join(args.output_path, "rgb.mp4"), fps=args.fps)
67
+ export_to_video(frames_alpha[0], os.path.join(args.output_path, "alpha.mp4"), fps=args.fps)
68
+
69
+
70
+ if __name__ == "__main__":
71
+ parser = argparse.ArgumentParser(description="Generate a video from a text prompt")
72
+ parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
73
+ parser.add_argument("--lora_path", type=str, default="/hpc2hdd/home/lwang592/projects/CogVideo/sat/outputs/training/ckpts-5b-attn_rebias-partial_lora-8gpu-wo_t2a/lora-rgba-12-21-19-11/5000/rgba_lora.safetensors", help="The path of the LoRA weights to be used")
74
+
75
+ parser.add_argument(
76
+ "--model_path", type=str, default="THUDM/CogVideoX-5B", help="Path of the pre-trained model use"
77
+ )
78
+
79
+
80
+ parser.add_argument("--output_path", type=str, default="./output", help="The path save generated video")
81
+ parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
82
+ parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
83
+ parser.add_argument("--num_frames", type=int, default=49, help="Number of steps for the inference process")
84
+ parser.add_argument("--width", type=int, default=720, help="Number of steps for the inference process")
85
+ parser.add_argument("--height", type=int, default=480, help="Number of steps for the inference process")
86
+ parser.add_argument("--fps", type=int, default=8, help="Number of steps for the inference process")
87
+ parser.add_argument("--seed", type=int, default=None, help="The seed for reproducibility")
88
+ args = parser.parse_args()
89
+
90
+ main(args)
CogVideoX/pipeline_rgba.py ADDED
@@ -0,0 +1,744 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ import math
18
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ from transformers import T5EncoderModel, T5Tokenizer
22
+
23
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
24
+ from diffusers.loaders import CogVideoXLoraLoaderMixin
25
+ from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
26
+ from diffusers.models.embeddings import get_3d_rotary_pos_embed
27
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
28
+ from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
29
+ from diffusers.utils import logging, replace_example_docstring
30
+ from diffusers.utils.torch_utils import randn_tensor
31
+ from diffusers.video_processor import VideoProcessor
32
+ from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput
33
+
34
+
35
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
36
+
37
+
38
+ EXAMPLE_DOC_STRING = """
39
+ Examples:
40
+ ```python
41
+ >>> import torch
42
+ >>> from diffusers import CogVideoXPipeline
43
+ >>> from diffusers.utils import export_to_video
44
+
45
+ >>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
46
+ >>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")
47
+ >>> prompt = (
48
+ ... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
49
+ ... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
50
+ ... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
51
+ ... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
52
+ ... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
53
+ ... "atmosphere of this unique musical performance."
54
+ ... )
55
+ >>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
56
+ >>> export_to_video(video, "output.mp4", fps=8)
57
+ ```
58
+ """
59
+
60
+
61
+ # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
62
+ def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
63
+ tw = tgt_width
64
+ th = tgt_height
65
+ h, w = src
66
+ r = h / w
67
+ if r > (th / tw):
68
+ resize_height = th
69
+ resize_width = int(round(th / h * w))
70
+ else:
71
+ resize_width = tw
72
+ resize_height = int(round(tw / w * h))
73
+
74
+ crop_top = int(round((th - resize_height) / 2.0))
75
+ crop_left = int(round((tw - resize_width) / 2.0))
76
+
77
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
78
+
79
+
80
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
81
+ def retrieve_timesteps(
82
+ scheduler,
83
+ num_inference_steps: Optional[int] = None,
84
+ device: Optional[Union[str, torch.device]] = None,
85
+ timesteps: Optional[List[int]] = None,
86
+ sigmas: Optional[List[float]] = None,
87
+ **kwargs,
88
+ ):
89
+ r"""
90
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
91
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
92
+
93
+ Args:
94
+ scheduler (`SchedulerMixin`):
95
+ The scheduler to get timesteps from.
96
+ num_inference_steps (`int`):
97
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
98
+ must be `None`.
99
+ device (`str` or `torch.device`, *optional*):
100
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
101
+ timesteps (`List[int]`, *optional*):
102
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
103
+ `num_inference_steps` and `sigmas` must be `None`.
104
+ sigmas (`List[float]`, *optional*):
105
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
106
+ `num_inference_steps` and `timesteps` must be `None`.
107
+
108
+ Returns:
109
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
110
+ second element is the number of inference steps.
111
+ """
112
+ if timesteps is not None and sigmas is not None:
113
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
114
+ if timesteps is not None:
115
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
116
+ if not accepts_timesteps:
117
+ raise ValueError(
118
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
119
+ f" timestep schedules. Please check whether you are using the correct scheduler."
120
+ )
121
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
122
+ timesteps = scheduler.timesteps
123
+ num_inference_steps = len(timesteps)
124
+ elif sigmas is not None:
125
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
126
+ if not accept_sigmas:
127
+ raise ValueError(
128
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
130
+ )
131
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ num_inference_steps = len(timesteps)
134
+ else:
135
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
136
+ timesteps = scheduler.timesteps
137
+ return timesteps, num_inference_steps
138
+
139
+
140
+ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
141
+ r"""
142
+ Pipeline for text-to-video generation using CogVideoX.
143
+
144
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
145
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
146
+
147
+ Args:
148
+ vae ([`AutoencoderKL`]):
149
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
150
+ text_encoder ([`T5EncoderModel`]):
151
+ Frozen text-encoder. CogVideoX uses
152
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
153
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
154
+ tokenizer (`T5Tokenizer`):
155
+ Tokenizer of class
156
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
157
+ transformer ([`CogVideoXTransformer3DModel`]):
158
+ A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
159
+ scheduler ([`SchedulerMixin`]):
160
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
161
+ """
162
+
163
+ _optional_components = []
164
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
165
+
166
+ _callback_tensor_inputs = [
167
+ "latents",
168
+ "prompt_embeds",
169
+ "negative_prompt_embeds",
170
+ ]
171
+
172
+ def __init__(
173
+ self,
174
+ tokenizer: T5Tokenizer,
175
+ text_encoder: T5EncoderModel,
176
+ vae: AutoencoderKLCogVideoX,
177
+ transformer: CogVideoXTransformer3DModel,
178
+ scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
179
+ ):
180
+ super().__init__()
181
+
182
+ self.register_modules(
183
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
184
+ )
185
+ self.vae_scale_factor_spatial = (
186
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
187
+ )
188
+ self.vae_scale_factor_temporal = (
189
+ self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
190
+ )
191
+ self.vae_scaling_factor_image = (
192
+ self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7
193
+ )
194
+
195
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
196
+
197
+ def _get_t5_prompt_embeds(
198
+ self,
199
+ prompt: Union[str, List[str]] = None,
200
+ num_videos_per_prompt: int = 1,
201
+ max_sequence_length: int = 226,
202
+ device: Optional[torch.device] = None,
203
+ dtype: Optional[torch.dtype] = None,
204
+ ):
205
+ device = device or self._execution_device
206
+ dtype = dtype or self.text_encoder.dtype
207
+
208
+ prompt = [prompt] if isinstance(prompt, str) else prompt
209
+ batch_size = len(prompt)
210
+
211
+ text_inputs = self.tokenizer(
212
+ prompt,
213
+ padding="max_length",
214
+ max_length=max_sequence_length,
215
+ truncation=True,
216
+ add_special_tokens=True,
217
+ return_tensors="pt",
218
+ )
219
+ text_input_ids = text_inputs.input_ids
220
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
221
+
222
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
223
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
224
+ logger.warning(
225
+ "The following part of your input was truncated because `max_sequence_length` is set to "
226
+ f" {max_sequence_length} tokens: {removed_text}"
227
+ )
228
+
229
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
230
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
231
+
232
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
233
+ _, seq_len, _ = prompt_embeds.shape
234
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
235
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
236
+
237
+ return prompt_embeds
238
+
239
+ def encode_prompt(
240
+ self,
241
+ prompt: Union[str, List[str]],
242
+ negative_prompt: Optional[Union[str, List[str]]] = None,
243
+ do_classifier_free_guidance: bool = True,
244
+ num_videos_per_prompt: int = 1,
245
+ prompt_embeds: Optional[torch.Tensor] = None,
246
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
247
+ max_sequence_length: int = 226,
248
+ device: Optional[torch.device] = None,
249
+ dtype: Optional[torch.dtype] = None,
250
+ ):
251
+ r"""
252
+ Encodes the prompt into text encoder hidden states.
253
+
254
+ Args:
255
+ prompt (`str` or `List[str]`, *optional*):
256
+ prompt to be encoded
257
+ negative_prompt (`str` or `List[str]`, *optional*):
258
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
259
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
260
+ less than `1`).
261
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
262
+ Whether to use classifier free guidance or not.
263
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
264
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
265
+ prompt_embeds (`torch.Tensor`, *optional*):
266
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
267
+ provided, text embeddings will be generated from `prompt` input argument.
268
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
269
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
270
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
271
+ argument.
272
+ device: (`torch.device`, *optional*):
273
+ torch device
274
+ dtype: (`torch.dtype`, *optional*):
275
+ torch dtype
276
+ """
277
+ device = device or self._execution_device
278
+
279
+ prompt = [prompt] if isinstance(prompt, str) else prompt
280
+ if prompt is not None:
281
+ batch_size = len(prompt)
282
+ else:
283
+ batch_size = prompt_embeds.shape[0]
284
+
285
+ if prompt_embeds is None:
286
+ prompt_embeds = self._get_t5_prompt_embeds(
287
+ prompt=prompt,
288
+ num_videos_per_prompt=num_videos_per_prompt,
289
+ max_sequence_length=max_sequence_length,
290
+ device=device,
291
+ dtype=dtype,
292
+ )
293
+
294
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
295
+ negative_prompt = negative_prompt or ""
296
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
297
+
298
+ if prompt is not None and type(prompt) is not type(negative_prompt):
299
+ raise TypeError(
300
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
301
+ f" {type(prompt)}."
302
+ )
303
+ elif batch_size != len(negative_prompt):
304
+ raise ValueError(
305
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
306
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
307
+ " the batch size of `prompt`."
308
+ )
309
+
310
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
311
+ prompt=negative_prompt,
312
+ num_videos_per_prompt=num_videos_per_prompt,
313
+ max_sequence_length=max_sequence_length,
314
+ device=device,
315
+ dtype=dtype,
316
+ )
317
+
318
+ return prompt_embeds, negative_prompt_embeds
319
+
320
+ def prepare_latents(
321
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
322
+ ):
323
+ if isinstance(generator, list) and len(generator) != batch_size:
324
+ raise ValueError(
325
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
326
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
327
+ )
328
+
329
+ shape = (
330
+ batch_size,
331
+ (num_frames - 1) // self.vae_scale_factor_temporal + 1,
332
+ num_channels_latents,
333
+ height // self.vae_scale_factor_spatial,
334
+ width // self.vae_scale_factor_spatial,
335
+ )
336
+
337
+ if latents is None:
338
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
339
+ else:
340
+ latents = latents.to(device)
341
+
342
+ # scale the initial noise by the standard deviation required by the scheduler
343
+ latents = latents * self.scheduler.init_noise_sigma
344
+ return latents
345
+
346
+ def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
347
+ latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
348
+ latents = 1 / self.vae_scaling_factor_image * latents
349
+
350
+ frames = self.vae.decode(latents).sample
351
+ return frames
352
+
353
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
354
+ def prepare_extra_step_kwargs(self, generator, eta):
355
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
356
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
357
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
358
+ # and should be between [0, 1]
359
+
360
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
361
+ extra_step_kwargs = {}
362
+ if accepts_eta:
363
+ extra_step_kwargs["eta"] = eta
364
+
365
+ # check if the scheduler accepts generator
366
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
367
+ if accepts_generator:
368
+ extra_step_kwargs["generator"] = generator
369
+ return extra_step_kwargs
370
+
371
+ # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
372
+ def check_inputs(
373
+ self,
374
+ prompt,
375
+ height,
376
+ width,
377
+ negative_prompt,
378
+ callback_on_step_end_tensor_inputs,
379
+ prompt_embeds=None,
380
+ negative_prompt_embeds=None,
381
+ ):
382
+ if height % 8 != 0 or width % 8 != 0:
383
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
384
+
385
+ if callback_on_step_end_tensor_inputs is not None and not all(
386
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
387
+ ):
388
+ raise ValueError(
389
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
390
+ )
391
+ if prompt is not None and prompt_embeds is not None:
392
+ raise ValueError(
393
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
394
+ " only forward one of the two."
395
+ )
396
+ elif prompt is None and prompt_embeds is None:
397
+ raise ValueError(
398
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
399
+ )
400
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
401
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
402
+
403
+ if prompt is not None and negative_prompt_embeds is not None:
404
+ raise ValueError(
405
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
406
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
407
+ )
408
+
409
+ if negative_prompt is not None and negative_prompt_embeds is not None:
410
+ raise ValueError(
411
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
412
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
413
+ )
414
+
415
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
416
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
417
+ raise ValueError(
418
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
419
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
420
+ f" {negative_prompt_embeds.shape}."
421
+ )
422
+
423
+ def fuse_qkv_projections(self) -> None:
424
+ r"""Enables fused QKV projections."""
425
+ self.fusing_transformer = True
426
+ self.transformer.fuse_qkv_projections()
427
+
428
+ def unfuse_qkv_projections(self) -> None:
429
+ r"""Disable QKV projection fusion if enabled."""
430
+ if not self.fusing_transformer:
431
+ logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
432
+ else:
433
+ self.transformer.unfuse_qkv_projections()
434
+ self.fusing_transformer = False
435
+
436
+ def _prepare_rotary_positional_embeddings(
437
+ self,
438
+ height: int,
439
+ width: int,
440
+ num_frames: int,
441
+ device: torch.device,
442
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
443
+ grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
444
+ grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
445
+ base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
446
+ base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
447
+
448
+ grid_crops_coords = get_resize_crop_region_for_grid(
449
+ (grid_height, grid_width), base_size_width, base_size_height
450
+ )
451
+ freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
452
+ embed_dim=self.transformer.config.attention_head_dim,
453
+ crops_coords=grid_crops_coords,
454
+ grid_size=(grid_height, grid_width),
455
+ temporal_size=num_frames,
456
+ )
457
+
458
+ freqs_cos = freqs_cos.to(device=device)
459
+ freqs_sin = freqs_sin.to(device=device)
460
+ return freqs_cos, freqs_sin
461
+
462
+ @property
463
+ def guidance_scale(self):
464
+ return self._guidance_scale
465
+
466
+ @property
467
+ def num_timesteps(self):
468
+ return self._num_timesteps
469
+
470
+ @property
471
+ def attention_kwargs(self):
472
+ return self._attention_kwargs
473
+
474
+ @property
475
+ def interrupt(self):
476
+ return self._interrupt
477
+
478
+ @torch.no_grad()
479
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
480
+ def __call__(
481
+ self,
482
+ prompt: Optional[Union[str, List[str]]] = None,
483
+ negative_prompt: Optional[Union[str, List[str]]] = None,
484
+ height: int = 480,
485
+ width: int = 720,
486
+ num_frames: int = 49,
487
+ num_inference_steps: int = 50,
488
+ timesteps: Optional[List[int]] = None,
489
+ guidance_scale: float = 6,
490
+ use_dynamic_cfg: bool = False,
491
+ num_videos_per_prompt: int = 1,
492
+ eta: float = 0.0,
493
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
494
+ latents: Optional[torch.FloatTensor] = None,
495
+ prompt_embeds: Optional[torch.FloatTensor] = None,
496
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
497
+ output_type: str = "pil",
498
+ return_dict: bool = True,
499
+ attention_kwargs: Optional[Dict[str, Any]] = None,
500
+ callback_on_step_end: Optional[
501
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
502
+ ] = None,
503
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
504
+ max_sequence_length: int = 226,
505
+ ) -> Union[CogVideoXPipelineOutput, Tuple]:
506
+ """
507
+ Function invoked when calling the pipeline for generation.
508
+
509
+ Args:
510
+ prompt (`str` or `List[str]`, *optional*):
511
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
512
+ instead.
513
+ negative_prompt (`str` or `List[str]`, *optional*):
514
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
515
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
516
+ less than `1`).
517
+ height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
518
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
519
+ width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
520
+ The width in pixels of the generated image. This is set to 720 by default for the best results.
521
+ num_frames (`int`, defaults to `48`):
522
+ Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
523
+ contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
524
+ num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that
525
+ needs to be satisfied is that of divisibility mentioned above.
526
+ num_inference_steps (`int`, *optional*, defaults to 50):
527
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
528
+ expense of slower inference.
529
+ timesteps (`List[int]`, *optional*):
530
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
531
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
532
+ passed will be used. Must be in descending order.
533
+ guidance_scale (`float`, *optional*, defaults to 7.0):
534
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
535
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
536
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
537
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
538
+ usually at the expense of lower image quality.
539
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
540
+ The number of videos to generate per prompt.
541
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
542
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
543
+ to make generation deterministic.
544
+ latents (`torch.FloatTensor`, *optional*):
545
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
546
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
547
+ tensor will ge generated by sampling using the supplied random `generator`.
548
+ prompt_embeds (`torch.FloatTensor`, *optional*):
549
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
550
+ provided, text embeddings will be generated from `prompt` input argument.
551
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
552
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
553
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
554
+ argument.
555
+ output_type (`str`, *optional*, defaults to `"pil"`):
556
+ The output format of the generate image. Choose between
557
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
558
+ return_dict (`bool`, *optional*, defaults to `True`):
559
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
560
+ of a plain tuple.
561
+ attention_kwargs (`dict`, *optional*):
562
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
563
+ `self.processor` in
564
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
565
+ callback_on_step_end (`Callable`, *optional*):
566
+ A function that calls at the end of each denoising steps during the inference. The function is called
567
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
568
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
569
+ `callback_on_step_end_tensor_inputs`.
570
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
571
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
572
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
573
+ `._callback_tensor_inputs` attribute of your pipeline class.
574
+ max_sequence_length (`int`, defaults to `226`):
575
+ Maximum sequence length in encoded prompt. Must be consistent with
576
+ `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
577
+
578
+ Examples:
579
+
580
+ Returns:
581
+ [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`:
582
+ [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
583
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
584
+ """
585
+
586
+ if num_frames > 49:
587
+ raise ValueError(
588
+ "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation."
589
+ )
590
+
591
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
592
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
593
+
594
+ num_videos_per_prompt = 1
595
+
596
+ # 1. Check inputs. Raise error if not correct
597
+ self.check_inputs(
598
+ prompt,
599
+ height,
600
+ width,
601
+ negative_prompt,
602
+ callback_on_step_end_tensor_inputs,
603
+ prompt_embeds,
604
+ negative_prompt_embeds,
605
+ )
606
+ self._guidance_scale = guidance_scale
607
+ self._attention_kwargs = attention_kwargs
608
+ self._interrupt = False
609
+
610
+ # 2. Default call parameters
611
+ if prompt is not None and isinstance(prompt, str):
612
+ batch_size = 1
613
+ elif prompt is not None and isinstance(prompt, list):
614
+ batch_size = len(prompt)
615
+ else:
616
+ batch_size = prompt_embeds.shape[0]
617
+
618
+ device = self._execution_device
619
+
620
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
621
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
622
+ # corresponds to doing no classifier free guidance.
623
+ do_classifier_free_guidance = guidance_scale > 1.0
624
+
625
+ # 3. Encode input prompt
626
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
627
+ prompt,
628
+ negative_prompt,
629
+ do_classifier_free_guidance,
630
+ num_videos_per_prompt=num_videos_per_prompt,
631
+ prompt_embeds=prompt_embeds,
632
+ negative_prompt_embeds=negative_prompt_embeds,
633
+ max_sequence_length=max_sequence_length,
634
+ device=device,
635
+ )
636
+ if do_classifier_free_guidance:
637
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
638
+
639
+ # 4. Prepare timesteps
640
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
641
+ self._num_timesteps = len(timesteps)
642
+
643
+ # 5. Prepare latents.
644
+ latent_channels = self.transformer.config.in_channels
645
+ latents = self.prepare_latents(
646
+ batch_size * num_videos_per_prompt,
647
+ latent_channels,
648
+ num_frames,
649
+ height,
650
+ width,
651
+ prompt_embeds.dtype,
652
+ device,
653
+ generator,
654
+ latents,
655
+ ).repeat(1,2,1,1,1) # Luozhou
656
+
657
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
658
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
659
+
660
+ # 7. Create rotary embeds if required
661
+ image_rotary_emb = (
662
+ self._prepare_rotary_positional_embeddings(height, width, latents.size(1) // 2, device) # Luozhou
663
+ if self.transformer.config.use_rotary_positional_embeddings
664
+ else None
665
+ )
666
+
667
+ # 8. Denoising loop
668
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
669
+
670
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
671
+ # for DPM-solver++
672
+ old_pred_original_sample = None
673
+ for i, t in enumerate(timesteps):
674
+ if self.interrupt:
675
+ continue
676
+
677
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
678
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
679
+
680
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
681
+ timestep = t.expand(latent_model_input.shape[0])
682
+
683
+ # predict noise model_output
684
+ noise_pred = self.transformer(
685
+ hidden_states=latent_model_input,
686
+ encoder_hidden_states=prompt_embeds,
687
+ timestep=timestep,
688
+ image_rotary_emb=image_rotary_emb,
689
+ attention_kwargs=attention_kwargs,
690
+ return_dict=False,
691
+ )[0]
692
+ noise_pred = noise_pred.float()
693
+
694
+ # perform guidance
695
+ if use_dynamic_cfg:
696
+ self._guidance_scale = 1 + guidance_scale * (
697
+ (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
698
+ )
699
+ if do_classifier_free_guidance:
700
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
701
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
702
+
703
+ # compute the previous noisy sample x_t -> x_t-1
704
+ if not isinstance(self.scheduler, CogVideoXDPMScheduler):
705
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
706
+ else:
707
+ latents, old_pred_original_sample = self.scheduler.step(
708
+ noise_pred,
709
+ old_pred_original_sample,
710
+ t,
711
+ timesteps[i - 1] if i > 0 else None,
712
+ latents,
713
+ **extra_step_kwargs,
714
+ return_dict=False,
715
+ )
716
+ latents = latents.to(prompt_embeds.dtype)
717
+
718
+ # call the callback, if provided
719
+ if callback_on_step_end is not None:
720
+ callback_kwargs = {}
721
+ for k in callback_on_step_end_tensor_inputs:
722
+ callback_kwargs[k] = locals()[k]
723
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
724
+
725
+ latents = callback_outputs.pop("latents", latents)
726
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
727
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
728
+
729
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
730
+ progress_bar.update()
731
+
732
+ if not output_type == "latent":
733
+ video = self.decode_latents(latents)
734
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
735
+ else:
736
+ video = latents
737
+
738
+ # Offload all models
739
+ self.maybe_free_model_hooks()
740
+
741
+ if not return_dict:
742
+ return (video,)
743
+
744
+ return CogVideoXPipelineOutput(frames=video)
CogVideoX/rgba_utils.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from typing import Any, Dict, Optional, Tuple, Union
5
+ from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
6
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
7
+ from safetensors.torch import load_file
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+ @torch.no_grad()
12
+ def decode_latents(pipe, latents):
13
+ video = pipe.decode_latents(latents)
14
+ video = pipe.video_processor.postprocess_video(video=video, output_type="np")
15
+ return video
16
+
17
+ def create_attention_mask(text_length: int, seq_length: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
18
+ """
19
+ Create an attention mask to block text from attending to alpha.
20
+
21
+ Args:
22
+ text_length: Length of the text sequence.
23
+ seq_length: Length of the other sequence.
24
+ device: The device where the mask will be stored.
25
+ dtype: The data type of the mask tensor.
26
+
27
+ Returns:
28
+ An attention mask tensor.
29
+ """
30
+ total_length = text_length + seq_length
31
+ dense_mask = torch.ones((total_length, total_length), dtype=torch.bool)
32
+ dense_mask[:text_length, text_length + seq_length // 2:] = False
33
+ return dense_mask.to(device=device, dtype=dtype)
34
+
35
+ class RGBALoRACogVideoXAttnProcessor:
36
+ r"""
37
+ Processor for implementing scaled dot-product attention for the CogVideoX model.
38
+ It applies a rotary embedding on query and key vectors, but does not include spatial normalization.
39
+ """
40
+
41
+ def __init__(self, device, dtype, attention_mask, lora_rank=128, lora_alpha=1.0, latent_dim=3072):
42
+ if not hasattr(F, "scaled_dot_product_attention"):
43
+ raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0 or later.")
44
+
45
+ # Initialize LoRA layers
46
+ self.lora_alpha = lora_alpha
47
+ self.lora_rank = lora_rank
48
+
49
+ # Helper function to create LoRA layers
50
+ def create_lora_layer(in_dim, mid_dim, out_dim):
51
+ return nn.Sequential(
52
+ nn.Linear(in_dim, mid_dim, bias=False, device=device, dtype=dtype),
53
+ nn.Linear(mid_dim, out_dim, bias=False, device=device, dtype=dtype)
54
+ )
55
+
56
+ self.to_q_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
57
+ self.to_k_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
58
+ self.to_v_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
59
+ self.to_out_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
60
+
61
+ # Store attention mask
62
+ self.attention_mask = attention_mask
63
+
64
+ def _apply_lora(self, hidden_states, seq_len, query, key, value, scaling):
65
+ """Applies LoRA updates to query, key, and value tensors."""
66
+ query_delta = self.to_q_lora(hidden_states).to(query.device)
67
+ query[:, -seq_len // 2:, :] += query_delta[:, -seq_len // 2:, :] * scaling
68
+
69
+ key_delta = self.to_k_lora(hidden_states).to(key.device)
70
+ key[:, -seq_len // 2:, :] += key_delta[:, -seq_len // 2:, :] * scaling
71
+
72
+ value_delta = self.to_v_lora(hidden_states).to(value.device)
73
+ value[:, -seq_len // 2:, :] += value_delta[:, -seq_len // 2:, :] * scaling
74
+
75
+ return query, key, value
76
+
77
+ def _apply_rotary_embedding(self, query, key, image_rotary_emb, seq_len, text_seq_length, attn):
78
+ """Applies rotary embeddings to query and key tensors."""
79
+ from diffusers.models.embeddings import apply_rotary_emb
80
+
81
+ # Apply rotary embedding to RGB and alpha sections
82
+ query[:, :, text_seq_length:text_seq_length + seq_len // 2] = apply_rotary_emb(
83
+ query[:, :, text_seq_length:text_seq_length + seq_len // 2], image_rotary_emb)
84
+ query[:, :, text_seq_length + seq_len // 2:] = apply_rotary_emb(
85
+ query[:, :, text_seq_length + seq_len // 2:], image_rotary_emb)
86
+
87
+ if not attn.is_cross_attention:
88
+ key[:, :, text_seq_length:text_seq_length + seq_len // 2] = apply_rotary_emb(
89
+ key[:, :, text_seq_length:text_seq_length + seq_len // 2], image_rotary_emb)
90
+ key[:, :, text_seq_length + seq_len // 2:] = apply_rotary_emb(
91
+ key[:, :, text_seq_length + seq_len // 2:], image_rotary_emb)
92
+
93
+ return query, key
94
+
95
+ def __call__(
96
+ self,
97
+ attn,
98
+ hidden_states: torch.Tensor,
99
+ encoder_hidden_states: torch.Tensor,
100
+ attention_mask: Optional[torch.Tensor] = None,
101
+ image_rotary_emb: Optional[torch.Tensor] = None,
102
+ ) -> torch.Tensor:
103
+ # Concatenate encoder and decoder hidden states
104
+ text_seq_length = encoder_hidden_states.size(1)
105
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
106
+
107
+ batch_size, sequence_length, _ = hidden_states.shape
108
+ seq_len = hidden_states.shape[1] - text_seq_length
109
+ scaling = self.lora_alpha / self.lora_rank
110
+
111
+ # Apply LoRA to query, key, value
112
+ query = attn.to_q(hidden_states)
113
+ key = attn.to_k(hidden_states)
114
+ value = attn.to_v(hidden_states)
115
+
116
+ query, key, value = self._apply_lora(hidden_states, seq_len, query, key, value, scaling)
117
+
118
+ # Reshape query, key, value for multi-head attention
119
+ inner_dim = key.shape[-1]
120
+ head_dim = inner_dim // attn.heads
121
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
122
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
123
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
124
+
125
+ # Normalize query and key if required
126
+ if attn.norm_q is not None:
127
+ query = attn.norm_q(query)
128
+ if attn.norm_k is not None:
129
+ key = attn.norm_k(key)
130
+
131
+ # Apply rotary embeddings if provided
132
+ if image_rotary_emb is not None:
133
+ query, key = self._apply_rotary_embedding(query, key, image_rotary_emb, seq_len, text_seq_length, attn)
134
+
135
+ # Compute scaled dot-product attention
136
+ hidden_states = F.scaled_dot_product_attention(
137
+ query, key, value, attn_mask=self.attention_mask, dropout_p=0.0, is_causal=False
138
+ )
139
+
140
+ # Reshape the output tensor back to the original shape
141
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
142
+
143
+ # Apply linear projection and LoRA to the output
144
+ original_hidden_states = attn.to_out[0](hidden_states)
145
+ hidden_states_delta = self.to_out_lora(hidden_states).to(hidden_states.device)
146
+ original_hidden_states[:, -seq_len // 2:, :] += hidden_states_delta[:, -seq_len // 2:, :] * scaling
147
+
148
+ # Apply dropout
149
+ hidden_states = attn.to_out[1](original_hidden_states)
150
+
151
+ # Split back into encoder and decoder hidden states
152
+ encoder_hidden_states, hidden_states = hidden_states.split(
153
+ [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
154
+ )
155
+
156
+ return hidden_states, encoder_hidden_states
157
+
158
+ def prepare_for_rgba_inference(
159
+ model, rgba_weights_path: str, device: torch.device, dtype: torch.dtype,
160
+ lora_rank: int = 128, lora_alpha: float = 1.0, text_length: int = 226, seq_length: int = 35100
161
+ ):
162
+ def load_lora_sequential_weights(lora_layer, lora_layers, prefix):
163
+ lora_layer[0].load_state_dict({'weight': lora_layers[f"{prefix}.lora_A.weight"]})
164
+ lora_layer[1].load_state_dict({'weight': lora_layers[f"{prefix}.lora_B.weight"]})
165
+
166
+
167
+ rgba_weights = load_file(rgba_weights_path)
168
+ aux_emb = rgba_weights['domain_emb']
169
+
170
+ attention_mask = create_attention_mask(text_length, seq_length, device, dtype)
171
+ attn_procs = {}
172
+
173
+ for name in model.attn_processors.keys():
174
+ attn_processor = RGBALoRACogVideoXAttnProcessor(
175
+ device=device, dtype=dtype, attention_mask=attention_mask,
176
+ lora_rank=lora_rank, lora_alpha=lora_alpha
177
+ )
178
+
179
+ index = name.split('.')[1]
180
+ base_prefix = f'transformer.transformer_blocks.{index}.attn1'
181
+
182
+ for lora_layer, prefix in [
183
+ (attn_processor.to_q_lora, f'{base_prefix}.to_q'),
184
+ (attn_processor.to_k_lora, f'{base_prefix}.to_k'),
185
+ (attn_processor.to_v_lora, f'{base_prefix}.to_v'),
186
+ (attn_processor.to_out_lora, f'{base_prefix}.to_out.0'),
187
+ ]:
188
+ load_lora_sequential_weights(lora_layer, rgba_weights, prefix)
189
+
190
+ attn_procs[name] = attn_processor
191
+
192
+ model.set_attn_processor(attn_procs)
193
+
194
+ def custom_forward(self):
195
+ def forward(
196
+ hidden_states: torch.Tensor,
197
+ encoder_hidden_states: torch.Tensor,
198
+ timestep: Union[int, float, torch.LongTensor],
199
+ timestep_cond: Optional[torch.Tensor] = None,
200
+ ofs: Optional[Union[int, float, torch.LongTensor]] = None,
201
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
202
+ attention_kwargs: Optional[Dict[str, Any]] = None,
203
+ return_dict: bool = True,
204
+ ):
205
+ if attention_kwargs is not None:
206
+ attention_kwargs = attention_kwargs.copy()
207
+ lora_scale = attention_kwargs.pop("scale", 1.0)
208
+ else:
209
+ lora_scale = 1.0
210
+
211
+ if USE_PEFT_BACKEND:
212
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
213
+ scale_lora_layers(self, lora_scale)
214
+ else:
215
+ if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
216
+ logger.warning(
217
+ "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
218
+ )
219
+
220
+ batch_size, num_frames, channels, height, width = hidden_states.shape
221
+
222
+ # 1. Time embedding
223
+ timesteps = timestep
224
+ t_emb = self.time_proj(timesteps)
225
+
226
+ # timesteps does not contain any weights and will always return f32 tensors
227
+ # but time_embedding might actually be running in fp16. so we need to cast here.
228
+ # there might be better ways to encapsulate this.
229
+ t_emb = t_emb.to(dtype=hidden_states.dtype)
230
+ emb = self.time_embedding(t_emb, timestep_cond)
231
+
232
+ if self.ofs_embedding is not None:
233
+ ofs_emb = self.ofs_proj(ofs)
234
+ ofs_emb = ofs_emb.to(dtype=hidden_states.dtype)
235
+ ofs_emb = self.ofs_embedding(ofs_emb)
236
+ emb = emb + ofs_emb
237
+
238
+ # 2. Patch embedding
239
+ hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
240
+ hidden_states = self.embedding_dropout(hidden_states)
241
+
242
+ text_seq_length = encoder_hidden_states.shape[1]
243
+ encoder_hidden_states = hidden_states[:, :text_seq_length]
244
+ hidden_states = hidden_states[:, text_seq_length:]
245
+
246
+ hidden_states[:, hidden_states.size(1) // 2:, :] += aux_emb.expand(batch_size, -1, -1).to(hidden_states.device, dtype=hidden_states.dtype)
247
+
248
+ # 3. Transformer blocks
249
+ for i, block in enumerate(self.transformer_blocks):
250
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
251
+
252
+ def create_custom_forward(module):
253
+ def custom_forward(*inputs):
254
+ return module(*inputs)
255
+
256
+ return custom_forward
257
+
258
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
259
+ hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
260
+ create_custom_forward(block),
261
+ hidden_states,
262
+ encoder_hidden_states,
263
+ emb,
264
+ image_rotary_emb,
265
+ **ckpt_kwargs,
266
+ )
267
+ else:
268
+ hidden_states, encoder_hidden_states = block(
269
+ hidden_states=hidden_states,
270
+ encoder_hidden_states=encoder_hidden_states,
271
+ temb=emb,
272
+ image_rotary_emb=image_rotary_emb,
273
+ )
274
+
275
+ if not self.config.use_rotary_positional_embeddings:
276
+ # CogVideoX-2B
277
+ hidden_states = self.norm_final(hidden_states)
278
+ else:
279
+ # CogVideoX-5B
280
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
281
+ hidden_states = self.norm_final(hidden_states)
282
+ hidden_states = hidden_states[:, text_seq_length:]
283
+
284
+ # 4. Final block
285
+ hidden_states = self.norm_out(hidden_states, temb=emb)
286
+ hidden_states = self.proj_out(hidden_states)
287
+
288
+ # 5. Unpatchify
289
+ p = self.config.patch_size
290
+ p_t = self.config.patch_size_t
291
+
292
+ if p_t is None:
293
+ output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
294
+ output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
295
+ else:
296
+ output = hidden_states.reshape(
297
+ batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
298
+ )
299
+ output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
300
+
301
+ if USE_PEFT_BACKEND:
302
+ # remove `lora_scale` from each PEFT layer
303
+ unscale_lora_layers(self, lora_scale)
304
+
305
+ if not return_dict:
306
+ return (output,)
307
+ return Transformer2DModelOutput(sample=output)
308
+
309
+
310
+ return forward
311
+
312
+ model.forward = custom_forward(model)
313
+
CogVideoX/test.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import CogVideoXImageToVideoPipeline
3
+ from diffusers.utils import export_to_video, load_image
4
+
5
+ prompt = "A dragon is flipping its wings"
6
+ image = load_image(image="/hpc2hdd/home/lwang592/projects/CogVideo/sat/configs/i2v/Dragon.jpg")
7
+ pipe = CogVideoXImageToVideoPipeline.from_pretrained(
8
+ "THUDM/CogVideoX-5b-I2V",
9
+ torch_dtype=torch.bfloat16
10
+ )
11
+
12
+ pipe.enable_sequential_cpu_offload()
13
+ pipe.vae.enable_tiling()
14
+ pipe.vae.enable_slicing()
15
+
16
+ video = pipe(
17
+ prompt=prompt,
18
+ image=image,
19
+ num_videos_per_prompt=1,
20
+ num_inference_steps=50,
21
+ num_frames=13,
22
+ guidance_scale=6,
23
+ generator=torch.Generator(device="cuda").manual_seed(42),
24
+ ).frames[0]
25
+
26
+ export_to_video(video, "output.mp4", fps=8)
app.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo.
3
+ set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt.
4
+ Usage:
5
+ OpenAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=https://api.openai.com/v1 python inference/gradio_web_demo.py
6
+ """
7
+
8
+ import math
9
+ import os
10
+ import random
11
+ import threading
12
+ import time
13
+
14
+ import cv2
15
+ import tempfile
16
+ import imageio_ffmpeg
17
+ import gradio as gr
18
+ import torch
19
+ from PIL import Image
20
+ # from diffusers import (
21
+ # CogVideoXPipeline,
22
+ # CogVideoXDPMScheduler,
23
+ # CogVideoXVideoToVideoPipeline,
24
+ # CogVideoXImageToVideoPipeline,
25
+ # CogVideoXTransformer3DModel,
26
+ # )
27
+ from typing import Union, List
28
+ from CogVideoX.pipeline_rgba import CogVideoXPipeline
29
+ from CogVideoX.rgba_utils import *
30
+ from diffusers import CogVideoXDPMScheduler
31
+
32
+ from diffusers.utils import load_video, load_image, export_to_video
33
+ from datetime import datetime, timedelta
34
+
35
+ from diffusers.image_processor import VaeImageProcessor
36
+ import moviepy.editor as mp
37
+ import numpy as np
38
+ from huggingface_hub import hf_hub_download, snapshot_download
39
+ import gc
40
+
41
+ device = "cuda" if torch.cuda.is_available() else "cpu"
42
+
43
+ # hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
44
+ hf_hub_download(repo_id="wileewang/TransPixar", filename="cogvideox_rgba_lora.safetensors", local_dir="model_cogvideox_rgba_lora")
45
+ # snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
46
+
47
+ pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5B", torch_dtype=torch.bfloat16)
48
+ # pipe.enable_sequential_cpu_offload()
49
+ pipe.vae.enable_slicing()
50
+ pipe.vae.enable_tiling()
51
+ pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
52
+ seq_length = 2 * (
53
+ (480 // pipe.vae_scale_factor_spatial // 2)
54
+ * (720 // pipe.vae_scale_factor_spatial // 2)
55
+ * ((13 - 1) // pipe.vae_scale_factor_temporal + 1)
56
+ )
57
+ prepare_for_rgba_inference(
58
+ pipe.transformer,
59
+ rgba_weights_path="model_cogvideox_rgba_lora/cogvideox_rgba_lora.safetensors",
60
+ device="cuda",
61
+ dtype=torch.bfloat16,
62
+ text_length=226,
63
+ seq_length=seq_length, # this is for the creation of attention mask.
64
+ )
65
+
66
+ # pipe.transformer.to(memory_format=torch.channels_last)
67
+ # pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
68
+ # pipe_image.transformer.to(memory_format=torch.channels_last)
69
+ # pipe_image.transformer = torch.compile(pipe_image.transformer, mode="max-autotune", fullgraph=True)
70
+
71
+ os.makedirs("./output", exist_ok=True)
72
+ os.makedirs("./gradio_tmp", exist_ok=True)
73
+
74
+ # upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
75
+ # frame_interpolation_model = load_rife_model("model_rife")
76
+
77
+
78
+ sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
79
+ For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
80
+ There are a few rules to follow:
81
+ You will only ever output a single video description per user request.
82
+ When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
83
+ Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.
84
+ Video descriptions must have the same num of words as examples below. Extra words will be ignored.
85
+ """
86
+ def save_video(tensor: Union[List[np.ndarray], List[Image.Image]], fps: int = 8, prefix='rgb'):
87
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
88
+ video_path = f"./output/{prefix}_{timestamp}.mp4"
89
+ os.makedirs(os.path.dirname(video_path), exist_ok=True)
90
+ export_to_video(tensor, video_path, fps=fps)
91
+ return video_path
92
+
93
+ def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
94
+ width, height = get_video_dimensions(input_video)
95
+
96
+ if width == 720 and height == 480:
97
+ processed_video = input_video
98
+ else:
99
+ processed_video = center_crop_resize(input_video)
100
+ return processed_video
101
+
102
+
103
+ def get_video_dimensions(input_video_path):
104
+ reader = imageio_ffmpeg.read_frames(input_video_path)
105
+ metadata = next(reader)
106
+ return metadata["size"]
107
+
108
+
109
+ def center_crop_resize(input_video_path, target_width=720, target_height=480):
110
+ cap = cv2.VideoCapture(input_video_path)
111
+
112
+ orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
113
+ orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
114
+ orig_fps = cap.get(cv2.CAP_PROP_FPS)
115
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
116
+
117
+ width_factor = target_width / orig_width
118
+ height_factor = target_height / orig_height
119
+ resize_factor = max(width_factor, height_factor)
120
+
121
+ inter_width = int(orig_width * resize_factor)
122
+ inter_height = int(orig_height * resize_factor)
123
+
124
+ target_fps = 8
125
+ ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
126
+ skip = min(5, ideal_skip) # Cap at 5
127
+
128
+ while (total_frames / (skip + 1)) < 49 and skip > 0:
129
+ skip -= 1
130
+
131
+ processed_frames = []
132
+ frame_count = 0
133
+ total_read = 0
134
+
135
+ while frame_count < 49 and total_read < total_frames:
136
+ ret, frame = cap.read()
137
+ if not ret:
138
+ break
139
+
140
+ if total_read % (skip + 1) == 0:
141
+ resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
142
+
143
+ start_x = (inter_width - target_width) // 2
144
+ start_y = (inter_height - target_height) // 2
145
+ cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]
146
+
147
+ processed_frames.append(cropped)
148
+ frame_count += 1
149
+
150
+ total_read += 1
151
+
152
+ cap.release()
153
+
154
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
155
+ temp_video_path = temp_file.name
156
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
157
+ out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
158
+
159
+ for frame in processed_frames:
160
+ out.write(frame)
161
+
162
+ out.release()
163
+
164
+ return temp_video_path
165
+
166
+
167
+
168
+ def infer(
169
+ prompt: str,
170
+ num_inference_steps: int,
171
+ guidance_scale: float,
172
+ seed: int = -1,
173
+ progress=gr.Progress(track_tqdm=True),
174
+ ):
175
+ if seed == -1:
176
+ seed = random.randint(0, 2**8 - 1)
177
+ pipe.to(device)
178
+ video_pt = pipe(
179
+ prompt=prompt + ", isolated background",
180
+ num_videos_per_prompt=1,
181
+ num_inference_steps=num_inference_steps,
182
+ num_frames=13,
183
+ use_dynamic_cfg=True,
184
+ output_type="latent",
185
+ guidance_scale=guidance_scale,
186
+ generator=torch.Generator(device=device).manual_seed(int(seed)),
187
+ ).frames
188
+ # pipe.to("cpu")
189
+ gc.collect()
190
+ return (video_pt, seed)
191
+
192
+
193
+ def convert_to_gif(video_path):
194
+ clip = mp.VideoFileClip(video_path)
195
+ clip = clip.set_fps(8)
196
+ clip = clip.resize(height=240)
197
+ gif_path = video_path.replace(".mp4", ".gif")
198
+ clip.write_gif(gif_path, fps=8)
199
+ return gif_path
200
+
201
+
202
+ def delete_old_files():
203
+ while True:
204
+ now = datetime.now()
205
+ cutoff = now - timedelta(minutes=10)
206
+ directories = ["./output", "./gradio_tmp"]
207
+
208
+ for directory in directories:
209
+ for filename in os.listdir(directory):
210
+ file_path = os.path.join(directory, filename)
211
+ if os.path.isfile(file_path):
212
+ file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
213
+ if file_mtime < cutoff:
214
+ os.remove(file_path)
215
+ time.sleep(600)
216
+
217
+
218
+ threading.Thread(target=delete_old_files, daemon=True).start()
219
+ # examples_videos = [["example_videos/horse.mp4"], ["example_videos/kitten.mp4"], ["example_videos/train_running.mp4"]]
220
+ # examples_images = [["example_images/beach.png"], ["example_images/street.png"], ["example_images/camping.png"]]
221
+
222
+ with gr.Blocks() as demo:
223
+ gr.Markdown("""
224
+ <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
225
+ TransPixar + CogVideoX-5B Huggingface Space🤗
226
+ </div>
227
+ <div style="text-align: center;">
228
+ <a href="https://huggingface.co/wileewang/TransPixar">🤗 TransPixar LoRA Hub</a> |
229
+ <a href="https://github.com/wileewang/TransPixar">🌐 Github</a> |
230
+ <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
231
+ </div>
232
+ <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
233
+ ⚠️ This demo is for academic research and experiential use only.
234
+ </div>
235
+ """)
236
+ with gr.Row():
237
+ with gr.Column():
238
+ # with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
239
+ # image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)")
240
+ # examples_component_images = gr.Examples(examples_images, inputs=[image_input], cache_examples=False)
241
+ # with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
242
+ # video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
243
+ # strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
244
+ # examples_component_videos = gr.Examples(examples_videos, inputs=[video_input], cache_examples=False)
245
+ prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
246
+ with gr.Group():
247
+ with gr.Column():
248
+ with gr.Row():
249
+ seed_param = gr.Number(
250
+ label="Inference Seed (Enter a positive number, -1 for random)", value=-1
251
+ )
252
+ # with gr.Row():
253
+ # enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
254
+ # enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
255
+ # gr.Markdown(
256
+ # "✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br>&nbsp;&nbsp;&nbsp;&nbsp;The entire process is based on open-source solutions."
257
+ # )
258
+
259
+ generate_button = gr.Button("🎬 Generate Video")
260
+
261
+ # Add the note at the bottom-left
262
+ with gr.Row():
263
+ gr.Markdown(
264
+ """
265
+ **Note:** The RGB is a premultiplied version to avoid the color decontamination problem.
266
+ It can directly composite with a background using:
267
+ ```
268
+ composite = rgb + (1 - alpha) * background
269
+ ```
270
+ """
271
+ )
272
+
273
+ with gr.Column():
274
+ rgb_video_output = gr.Video(label="Generate RGB Video", width=720, height=480)
275
+ alpha_video_output = gr.Video(label="Generate Alpha Video", width=720, height=480)
276
+ with gr.Row():
277
+ download_rgb_video_button = gr.File(label="📥 Download RGB Video", visible=False)
278
+ download_alpha_video_button = gr.File(label="📥 Download Alpha Video", visible=False)
279
+ seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)
280
+
281
+
282
+ def generate(
283
+ prompt,
284
+ seed_value,
285
+ progress=gr.Progress(track_tqdm=True)
286
+ ):
287
+ latents, seed = infer(
288
+ prompt,
289
+ num_inference_steps=25, # NOT Changed
290
+ guidance_scale=7.0, # NOT Changed
291
+ seed=seed_value,
292
+ progress=progress,
293
+ )
294
+
295
+ latents_rgb, latents_alpha = latents.chunk(2, dim=1)
296
+
297
+ frames_rgb = decode_latents(pipe, latents_rgb)
298
+ frames_alpha = decode_latents(pipe, latents_alpha)
299
+
300
+ pooled_alpha = np.max(frames_alpha, axis=-1, keepdims=True)
301
+ frames_alpha_pooled = np.repeat(pooled_alpha, 3, axis=-1)
302
+ premultiplied_rgb = frames_rgb * frames_alpha_pooled
303
+
304
+ rgb_video_path = save_video(premultiplied_rgb[0], fps=8, prefix='rgb')
305
+ rgb_video_update = gr.update(visible=True, value=rgb_video_path)
306
+
307
+ alpha_video_path = save_video(frames_alpha_pooled[0], fps=8, prefix='alpha')
308
+ alpha_video_update = gr.update(visible=True, value=alpha_video_path)
309
+ seed_update = gr.update(visible=True, value=seed)
310
+
311
+ return rgb_video_path, alpha_video_path, rgb_video_update, alpha_video_update, seed_update
312
+
313
+
314
+ generate_button.click(
315
+ generate,
316
+ inputs=[prompt, seed_param],
317
+ outputs=[rgb_video_output, alpha_video_output, download_rgb_video_button, download_alpha_video_button, seed_text],
318
+ )
319
+
320
+
321
+ if __name__ == "__main__":
322
+ demo.queue(max_size=15)
323
+ demo.launch()