File size: 11,298 Bytes
7dc9494
 
 
 
 
 
 
 
 
 
 
 
 
aa893f8
7dc9494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a508fb
7dc9494
 
 
 
 
 
 
 
 
 
 
d8ef3e5
7dc9494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39fb4af
7dc9494
 
 
 
 
 
 
 
 
6c78e87
7dc9494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
062a98f
7dc9494
 
 
 
 
 
d141500
7dc9494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e75d879
7dc9494
 
 
 
c3dd7f3
 
 
7dc9494
 
 
 
e75d879
 
7dc9494
 
 
 
 
39fb4af
7dc9494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ef3e5
 
7dc9494
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo.
set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt.
Usage:
    OpenAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=https://api.openai.com/v1 python inference/gradio_web_demo.py
"""

import math
import os
import random
import threading
import time

import spaces
import cv2
import tempfile
import imageio_ffmpeg
import gradio as gr
import torch
from PIL import Image
# from diffusers import (
#     CogVideoXPipeline,
#     CogVideoXDPMScheduler,
#     CogVideoXVideoToVideoPipeline,
#     CogVideoXImageToVideoPipeline,
#     CogVideoXTransformer3DModel,
# )
from typing import Union, List
from CogVideoX.pipeline_rgba import CogVideoXPipeline
from CogVideoX.rgba_utils import *
from diffusers import CogVideoXDPMScheduler

from diffusers.utils import load_video, load_image, export_to_video
from datetime import datetime, timedelta

from diffusers.image_processor import VaeImageProcessor
import moviepy.editor as mp
import numpy as np
from huggingface_hub import hf_hub_download, snapshot_download
import gc

device = "cuda" if torch.cuda.is_available() else "cpu"

hf_hub_download(repo_id="wileewang/TransPixar", filename="cogvideox_rgba_lora.safetensors", local_dir="model_cogvideox_rgba_lora")

pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5B", torch_dtype=torch.bfloat16)
# pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
seq_length = 2 * (
    (480 // pipe.vae_scale_factor_spatial // 2)
    * (720 // pipe.vae_scale_factor_spatial // 2)
    * ((13 - 1) // pipe.vae_scale_factor_temporal + 1)
)
prepare_for_rgba_inference(
    pipe.transformer,
    rgba_weights_path="model_cogvideox_rgba_lora/cogvideox_rgba_lora.safetensors",
    device=device,
    dtype=torch.bfloat16,
    text_length=226,
    seq_length=seq_length, # this is for the creation of attention mask.
)

# pipe.transformer.to(memory_format=torch.channels_last)
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
# pipe_image.transformer.to(memory_format=torch.channels_last)
# pipe_image.transformer = torch.compile(pipe_image.transformer, mode="max-autotune", fullgraph=True)

os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)

# upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
# frame_interpolation_model = load_rife_model("model_rife")


def save_video(tensor: Union[List[np.ndarray], List[Image.Image]], fps: int = 8, prefix='rgb'):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    video_path = f"./output/{prefix}_{timestamp}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    export_to_video(tensor, video_path, fps=fps)
    return video_path

def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
    width, height = get_video_dimensions(input_video)

    if width == 720 and height == 480:
        processed_video = input_video
    else:
        processed_video = center_crop_resize(input_video)
    return processed_video


def get_video_dimensions(input_video_path):
    reader = imageio_ffmpeg.read_frames(input_video_path)
    metadata = next(reader)
    return metadata["size"]


def center_crop_resize(input_video_path, target_width=720, target_height=480):
    cap = cv2.VideoCapture(input_video_path)

    orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    orig_fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    width_factor = target_width / orig_width
    height_factor = target_height / orig_height
    resize_factor = max(width_factor, height_factor)

    inter_width = int(orig_width * resize_factor)
    inter_height = int(orig_height * resize_factor)

    target_fps = 8
    ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
    skip = min(5, ideal_skip)  # Cap at 5

    while (total_frames / (skip + 1)) < 49 and skip > 0:
        skip -= 1

    processed_frames = []
    frame_count = 0
    total_read = 0

    while frame_count < 49 and total_read < total_frames:
        ret, frame = cap.read()
        if not ret:
            break

        if total_read % (skip + 1) == 0:
            resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)

            start_x = (inter_width - target_width) // 2
            start_y = (inter_height - target_height) // 2
            cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]

            processed_frames.append(cropped)
            frame_count += 1

        total_read += 1

    cap.release()

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
        temp_video_path = temp_file.name
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))

        for frame in processed_frames:
            out.write(frame)

        out.release()

    return temp_video_path


@spaces.GPU(duration=300)
def infer(
    prompt: str,
    num_inference_steps: int,
    guidance_scale: float,
    seed: int = -1,
    progress=gr.Progress(track_tqdm=True),
):
    if seed == -1:
        seed = random.randint(0, 2**8 - 1)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    pipe.to(device)
    video_pt = pipe(
        prompt=prompt + ", isolated background",
        num_videos_per_prompt=1,
        num_inference_steps=num_inference_steps,
        num_frames=13,
        use_dynamic_cfg=True,
        output_type="latent",
        guidance_scale=guidance_scale,
        generator=torch.Generator(device=device).manual_seed(int(seed)),
    ).frames
    # pipe.to("cpu")
    gc.collect()
    return (video_pt, seed)


def convert_to_gif(video_path):
    clip = mp.VideoFileClip(video_path)
    clip = clip.set_fps(8)
    clip = clip.resize(height=240)
    gif_path = video_path.replace(".mp4", ".gif")
    clip.write_gif(gif_path, fps=8)
    return gif_path


def delete_old_files():
    while True:
        now = datetime.now()
        cutoff = now - timedelta(minutes=10)
        directories = ["./output", "./gradio_tmp"]

        for directory in directories:
            for filename in os.listdir(directory):
                file_path = os.path.join(directory, filename)
                if os.path.isfile(file_path):
                    file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
                    if file_mtime < cutoff:
                        os.remove(file_path)
        time.sleep(600)


threading.Thread(target=delete_old_files, daemon=True).start()
# examples_videos = [["example_videos/horse.mp4"], ["example_videos/kitten.mp4"], ["example_videos/train_running.mp4"]]
# examples_images = [["example_images/beach.png"], ["example_images/street.png"], ["example_images/camping.png"]]

with gr.Blocks() as demo:
    gr.HTML("""
           <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
               TransPixar + CogVideoX-5B Huggingface Space🤗
           </div>
           <div style="text-align: center;">
               <a href="https://huggingface.co./wileewang/TransPixar">🤗 TransPixar LoRA Hub</a> |
               <a href="https://github.com/wileewang/TransPixar">🌐 Github</a> |
               <a href="https://arxiv.org/abs/2501.03006">📜 arxiv </a>
           </div>
           <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
            ⚠️ This demo is for academic research and experiential use only. 
            </div>
           """)
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
            with gr.Group():
                with gr.Column():
                    with gr.Row():
                        seed_param = gr.Number(
                            label="Inference Seed (Enter a positive number, -1 for random)", value=-1
                        )

            generate_button = gr.Button("🎬 Generate Video")

            # Add the note at the bottom-left
            with gr.Row():
                gr.Markdown(
                    """
                    **Note:** The output RGB is a premultiplied version to avoid the color decontamination problem.
                    It can directly composite with a background using:
                    ```
                    composite = rgb + (1 - alpha) * background
                    ```
                    Due to limited online resources, we have restricted the inference steps to 25 and the number of frames to 13, 
                    which may affect the generation quality to some extent. 
                    For a better experience, we recommend visiting our GitHub repository and running the method locally by following the provided setup instructions.
                    """
                )

        with gr.Column():
            rgb_video_output = gr.Video(label="Generated RGB Video", width=720, height=480)
            alpha_video_output = gr.Video(label="Generated Alpha Video", width=720, height=480)
            with gr.Row():
                download_rgb_video_button = gr.File(label="📥 Download RGB Video", visible=False)
                download_alpha_video_button = gr.File(label="📥 Download Alpha Video", visible=False)
                seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)

    @spaces.GPU(duration=300)
    def generate(
        prompt,
        seed_value,
        progress=gr.Progress(track_tqdm=True)
    ):
        latents, seed = infer(
            prompt,
            num_inference_steps=25,  # NOT Changed
            guidance_scale=7.0,  # NOT Changed
            seed=seed_value,
            progress=progress,
        )

        latents_rgb, latents_alpha = latents.chunk(2, dim=1)

        frames_rgb = decode_latents(pipe, latents_rgb)
        frames_alpha = decode_latents(pipe, latents_alpha)

        pooled_alpha = np.max(frames_alpha, axis=-1, keepdims=True)
        frames_alpha_pooled = np.repeat(pooled_alpha, 3, axis=-1)
        premultiplied_rgb = frames_rgb * frames_alpha_pooled

        rgb_video_path = save_video(premultiplied_rgb[0], fps=8, prefix='rgb')
        rgb_video_update = gr.update(visible=True, value=rgb_video_path)

        alpha_video_path = save_video(frames_alpha_pooled[0], fps=8, prefix='alpha')
        alpha_video_update = gr.update(visible=True, value=alpha_video_path)
        seed_update = gr.update(visible=True, value=seed)

        pipe.to("cpu")

        return rgb_video_path, alpha_video_path, rgb_video_update, alpha_video_update, seed_update


    generate_button.click(
        generate,
        inputs=[prompt, seed_param],
        outputs=[rgb_video_output, alpha_video_output, download_rgb_video_button, download_alpha_video_button, seed_text],
    )


if __name__ == "__main__":
    demo.queue(max_size=15)
    demo.launch()