Spaces:
Runtime error
Runtime error
# from ultralytics import YOLO | |
import os | |
import io | |
import base64 | |
import time | |
from PIL import Image, ImageDraw, ImageFont | |
import json | |
import requests | |
# utility function | |
import os | |
from openai import AzureOpenAI | |
import json | |
import sys | |
import os | |
import cv2 | |
import numpy as np | |
# %matplotlib inline | |
from matplotlib import pyplot as plt | |
import easyocr | |
reader = easyocr.Reader(['en']) | |
import time | |
import base64 | |
import os | |
import ast | |
import torch | |
from typing import Tuple, List | |
from torchvision.ops import box_convert | |
import re | |
from torchvision.transforms import ToPILImage | |
import supervision as sv | |
import torchvision.transforms as T | |
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None): | |
if not device: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if model_name == "blip2": | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration | |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
if device == 'cpu': | |
model = Blip2ForConditionalGeneration.from_pretrained( | |
model_name_or_path, device_map=None, torch_dtype=torch.float32 | |
) | |
else: | |
model = Blip2ForConditionalGeneration.from_pretrained( | |
model_name_or_path, device_map=None, torch_dtype=torch.float16 | |
).to(device) | |
elif model_name == "florence2": | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) | |
if device == 'cpu': | |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True) | |
else: | |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device) | |
return {'model': model.to(device), 'processor': processor} | |
def get_yolo_model(model_path): | |
from ultralytics import YOLO | |
# Load the model. | |
model = YOLO(model_path) | |
return model | |
def get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=None): | |
to_pil = ToPILImage() | |
if ocr_bbox: | |
non_ocr_boxes = filtered_boxes[len(ocr_bbox):] | |
else: | |
non_ocr_boxes = filtered_boxes | |
croped_pil_image = [] | |
for i, coord in enumerate(non_ocr_boxes): | |
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1]) | |
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0]) | |
cropped_image = image_source[ymin:ymax, xmin:xmax, :] | |
croped_pil_image.append(to_pil(cropped_image)) | |
model, processor = caption_model_processor['model'], caption_model_processor['processor'] | |
if not prompt: | |
if 'florence' in model.config.name_or_path: | |
prompt = "<CAPTION>" | |
else: | |
prompt = "The image shows" | |
batch_size = 10 # Number of samples per batch | |
generated_texts = [] | |
device = model.device | |
for i in range(0, len(croped_pil_image), batch_size): | |
batch = croped_pil_image[i:i+batch_size] | |
if model.device.type == 'cuda': | |
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device, dtype=torch.float16) | |
else: | |
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device) | |
if 'florence' in model.config.name_or_path: | |
generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=1024,num_beams=3, do_sample=False) | |
else: | |
generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True, | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
generated_text = [gen.strip() for gen in generated_text] | |
generated_texts.extend(generated_text) | |
return generated_texts | |
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor): | |
to_pil = ToPILImage() | |
if ocr_bbox: | |
non_ocr_boxes = filtered_boxes[len(ocr_bbox):] | |
else: | |
non_ocr_boxes = filtered_boxes | |
croped_pil_image = [] | |
for i, coord in enumerate(non_ocr_boxes): | |
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1]) | |
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0]) | |
cropped_image = image_source[ymin:ymax, xmin:xmax, :] | |
croped_pil_image.append(to_pil(cropped_image)) | |
model, processor = caption_model_processor['model'], caption_model_processor['processor'] | |
device = model.device | |
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}] | |
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
batch_size = 5 # Number of samples per batch | |
generated_texts = [] | |
for i in range(0, len(croped_pil_image), batch_size): | |
images = croped_pil_image[i:i+batch_size] | |
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images] | |
inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []} | |
texts = [prompt] * len(images) | |
for i, txt in enumerate(texts): | |
input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt") | |
inputs['input_ids'].append(input['input_ids']) | |
inputs['attention_mask'].append(input['attention_mask']) | |
inputs['pixel_values'].append(input['pixel_values']) | |
inputs['image_sizes'].append(input['image_sizes']) | |
max_len = max([x.shape[1] for x in inputs['input_ids']]) | |
for i, v in enumerate(inputs['input_ids']): | |
inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1) | |
inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1) | |
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()} | |
generation_args = { | |
"max_new_tokens": 25, | |
"temperature": 0.01, | |
"do_sample": False, | |
} | |
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) | |
# # remove input tokens | |
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
response = [res.strip('\n').strip() for res in response] | |
generated_texts.extend(response) | |
return generated_texts | |
def remove_overlap(boxes, iou_threshold, ocr_bbox=None): | |
assert ocr_bbox is None or isinstance(ocr_bbox, List) | |
def box_area(box): | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
def intersection_area(box1, box2): | |
x1 = max(box1[0], box2[0]) | |
y1 = max(box1[1], box2[1]) | |
x2 = min(box1[2], box2[2]) | |
y2 = min(box1[3], box2[3]) | |
return max(0, x2 - x1) * max(0, y2 - y1) | |
def IoU(box1, box2): | |
intersection = intersection_area(box1, box2) | |
union = box_area(box1) + box_area(box2) - intersection + 1e-6 | |
if box_area(box1) > 0 and box_area(box2) > 0: | |
ratio1 = intersection / box_area(box1) | |
ratio2 = intersection / box_area(box2) | |
else: | |
ratio1, ratio2 = 0, 0 | |
return max(intersection / union, ratio1, ratio2) | |
boxes = boxes.tolist() | |
filtered_boxes = [] | |
if ocr_bbox: | |
filtered_boxes.extend(ocr_bbox) | |
# print('ocr_bbox!!!', ocr_bbox) | |
for i, box1 in enumerate(boxes): | |
# if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j): | |
is_valid_box = True | |
for j, box2 in enumerate(boxes): | |
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2): | |
is_valid_box = False | |
break | |
if is_valid_box: | |
# add the following 2 lines to include ocr bbox | |
if ocr_bbox: | |
if not any(IoU(box1, box3) > iou_threshold for k, box3 in enumerate(ocr_bbox)): | |
filtered_boxes.append(box1) | |
else: | |
filtered_boxes.append(box1) | |
return torch.tensor(filtered_boxes) | |
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image_source = Image.open(image_path).convert("RGB") | |
image = np.asarray(image_source) | |
image_transformed, _ = transform(image_source, None) | |
return image, image_transformed | |
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float, | |
text_padding=5, text_thickness=2, thickness=3) -> np.ndarray: | |
""" | |
This function annotates an image with bounding boxes and labels. | |
Parameters: | |
image_source (np.ndarray): The source image to be annotated. | |
boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale | |
logits (torch.Tensor): A tensor containing confidence scores for each bounding box. | |
phrases (List[str]): A list of labels for each bounding box. | |
text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web | |
Returns: | |
np.ndarray: The annotated image. | |
""" | |
h, w, _ = image_source.shape | |
boxes = boxes * torch.Tensor([w, h, w, h]) | |
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() | |
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy() | |
detections = sv.Detections(xyxy=xyxy) | |
labels = [f"{phrase}" for phrase in range(boxes.shape[0])] | |
from util.box_annotator import BoxAnnotator | |
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web | |
annotated_frame = image_source.copy() | |
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h)) | |
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)} | |
return annotated_frame, label_coordinates | |
def predict(model, image, caption, box_threshold, text_threshold): | |
""" Use huggingface model to replace the original model | |
""" | |
model, processor = model['model'], model['processor'] | |
device = model.device | |
inputs = processor(images=image, text=caption, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
results = processor.post_process_grounded_object_detection( | |
outputs, | |
inputs.input_ids, | |
box_threshold=box_threshold, # 0.4, | |
text_threshold=text_threshold, # 0.3, | |
target_sizes=[image.size[::-1]] | |
)[0] | |
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"] | |
return boxes, logits, phrases | |
def predict_yolo(model, image_path, box_threshold): | |
""" Use huggingface model to replace the original model | |
""" | |
# model = model['model'] | |
result = model.predict( | |
source=image_path, | |
conf=box_threshold, | |
# iou=0.5, # default 0.7 | |
) | |
boxes = result[0].boxes.xyxy#.tolist() # in pixel space | |
conf = result[0].boxes.conf | |
phrases = [str(i) for i in range(len(boxes))] | |
return boxes, conf, phrases | |
def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None): | |
""" ocr_bbox: list of xyxy format bbox | |
""" | |
TEXT_PROMPT = "clickable buttons on the screen" | |
# BOX_TRESHOLD = 0.02 # 0.05/0.02 for web and 0.1 for mobile | |
TEXT_TRESHOLD = 0.01 # 0.9 # 0.01 | |
image_source = Image.open(img_path).convert("RGB") | |
w, h = image_source.size | |
# import pdb; pdb.set_trace() | |
if False: # TODO | |
xyxy, logits, phrases = predict(model=model, image=image_source, caption=TEXT_PROMPT, box_threshold=BOX_TRESHOLD, text_threshold=TEXT_TRESHOLD) | |
else: | |
xyxy, logits, phrases = predict_yolo(model=model, image_path=img_path, box_threshold=BOX_TRESHOLD) | |
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device) | |
image_source = np.asarray(image_source) | |
phrases = [str(i) for i in range(len(phrases))] | |
# annotate the image with labels | |
h, w, _ = image_source.shape | |
if ocr_bbox: | |
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h]) | |
ocr_bbox=ocr_bbox.tolist() | |
else: | |
print('no ocr bbox!!!') | |
ocr_bbox = None | |
filtered_boxes = remove_overlap(boxes=xyxy, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox) | |
# get parsed icon local semantics | |
if use_local_semantics: | |
caption_model = caption_model_processor['model'] | |
if 'phi3_v' in caption_model.config.model_type: | |
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor) | |
else: | |
parsed_content_icon = get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=prompt) | |
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] | |
icon_start = len(ocr_text) | |
parsed_content_icon_ls = [] | |
for i, txt in enumerate(parsed_content_icon): | |
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}") | |
parsed_content_merged = ocr_text + parsed_content_icon_ls | |
else: | |
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] | |
parsed_content_merged = ocr_text | |
filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh") | |
phrases = [i for i in range(len(filtered_boxes))] | |
# draw boxes | |
if draw_bbox_config: | |
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config) | |
else: | |
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding) | |
pil_img = Image.fromarray(annotated_frame) | |
buffered = io.BytesIO() | |
pil_img.save(buffered, format="PNG") | |
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii') | |
if output_coord_in_ratio: | |
# h, w, _ = image_source.shape | |
label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()} | |
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0] | |
return encoded_image, label_coordinates, parsed_content_merged | |
def get_xywh(input): | |
x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1] | |
x, y, w, h = int(x), int(y), int(w), int(h) | |
return x, y, w, h | |
def get_xyxy(input): | |
x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1] | |
x, y, xp, yp = int(x), int(y), int(xp), int(yp) | |
return x, y, xp, yp | |
def get_xywh_yolo(input): | |
x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1] | |
x, y, w, h = int(x), int(y), int(w), int(h) | |
return x, y, w, h | |
def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None): | |
if easyocr_args is None: | |
easyocr_args = {} | |
result = reader.readtext(image_path, **easyocr_args) | |
is_goal_filtered = False | |
# print('goal filtering pred:', result[-5:]) | |
coord = [item[0] for item in result] | |
text = [item[1] for item in result] | |
# read the image using cv2 | |
if display_img: | |
opencv_img = cv2.imread(image_path) | |
opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR) | |
bb = [] | |
for item in coord: | |
x, y, a, b = get_xywh(item) | |
# print(x, y, a, b) | |
bb.append((x, y, a, b)) | |
cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2) | |
# Display the image | |
plt.imshow(opencv_img) | |
else: | |
if output_bb_format == 'xywh': | |
bb = [get_xywh(item) for item in coord] | |
elif output_bb_format == 'xyxy': | |
bb = [get_xyxy(item) for item in coord] | |
# print('bounding box!!!', bb) | |
return (text, bb), is_goal_filtered | |