unixro commited on
Commit
0439dbf
1 Parent(s): dd8004c

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ imgs/windows_home.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ weights/icon_caption_blip2
2
+ weights/icon_caption_florence
3
+ weights/icon_detect/
4
+ .gradio
5
+ __pycache__
LICENSE ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More_considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution 4.0 International Public License
58
+
59
+ By exercising the Licensed Rights (defined below), You accept and agree
60
+ to be bound by the terms and conditions of this Creative Commons
61
+ Attribution 4.0 International Public License ("Public License"). To the
62
+ extent this Public License may be interpreted as a contract, You are
63
+ granted the Licensed Rights in consideration of Your acceptance of
64
+ these terms and conditions, and the Licensor grants You such rights in
65
+ consideration of benefits the Licensor receives from making the
66
+ Licensed Material available under these terms and conditions.
67
+
68
+
69
+ Section 1 -- Definitions.
70
+
71
+ a. Adapted Material means material subject to Copyright and Similar
72
+ Rights that is derived from or based upon the Licensed Material
73
+ and in which the Licensed Material is translated, altered,
74
+ arranged, transformed, or otherwise modified in a manner requiring
75
+ permission under the Copyright and Similar Rights held by the
76
+ Licensor. For purposes of this Public License, where the Licensed
77
+ Material is a musical work, performance, or sound recording,
78
+ Adapted Material is always produced where the Licensed Material is
79
+ synched in timed relation with a moving image.
80
+
81
+ b. Adapter's License means the license You apply to Your Copyright
82
+ and Similar Rights in Your contributions to Adapted Material in
83
+ accordance with the terms and conditions of this Public License.
84
+
85
+ c. Copyright and Similar Rights means copyright and/or similar rights
86
+ closely related to copyright including, without limitation,
87
+ performance, broadcast, sound recording, and Sui Generis Database
88
+ Rights, without regard to how the rights are labeled or
89
+ categorized. For purposes of this Public License, the rights
90
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
91
+ Rights.
92
+
93
+ d. Effective Technological Measures means those measures that, in the
94
+ absence of proper authority, may not be circumvented under laws
95
+ fulfilling obligations under Article 11 of the WIPO Copyright
96
+ Treaty adopted on December 20, 1996, and/or similar international
97
+ agreements.
98
+
99
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
100
+ any other exception or limitation to Copyright and Similar Rights
101
+ that applies to Your use of the Licensed Material.
102
+
103
+ f. Licensed Material means the artistic or literary work, database,
104
+ or other material to which the Licensor applied this Public
105
+ License.
106
+
107
+ g. Licensed Rights means the rights granted to You subject to the
108
+ terms and conditions of this Public License, which are limited to
109
+ all Copyright and Similar Rights that apply to Your use of the
110
+ Licensed Material and that the Licensor has authority to license.
111
+
112
+ h. Licensor means the individual(s) or entity(ies) granting rights
113
+ under this Public License.
114
+
115
+ i. Share means to provide material to the public by any means or
116
+ process that requires permission under the Licensed Rights, such
117
+ as reproduction, public display, public performance, distribution,
118
+ dissemination, communication, or importation, and to make material
119
+ available to the public including in ways that members of the
120
+ public may access the material from a place and at a time
121
+ individually chosen by them.
122
+
123
+ j. Sui Generis Database Rights means rights other than copyright
124
+ resulting from Directive 96/9/EC of the European Parliament and of
125
+ the Council of 11 March 1996 on the legal protection of databases,
126
+ as amended and/or succeeded, as well as other essentially
127
+ equivalent rights anywhere in the world.
128
+
129
+ k. You means the individual or entity exercising the Licensed Rights
130
+ under this Public License. Your has a corresponding meaning.
131
+
132
+
133
+ Section 2 -- Scope.
134
+
135
+ a. License grant.
136
+
137
+ 1. Subject to the terms and conditions of this Public License,
138
+ the Licensor hereby grants You a worldwide, royalty-free,
139
+ non-sublicensable, non-exclusive, irrevocable license to
140
+ exercise the Licensed Rights in the Licensed Material to:
141
+
142
+ a. reproduce and Share the Licensed Material, in whole or
143
+ in part; and
144
+
145
+ b. produce, reproduce, and Share Adapted Material.
146
+
147
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
148
+ Exceptions and Limitations apply to Your use, this Public
149
+ License does not apply, and You do not need to comply with
150
+ its terms and conditions.
151
+
152
+ 3. Term. The term of this Public License is specified in Section
153
+ 6(a).
154
+
155
+ 4. Media and formats; technical modifications allowed. The
156
+ Licensor authorizes You to exercise the Licensed Rights in
157
+ all media and formats whether now known or hereafter created,
158
+ and to make technical modifications necessary to do so. The
159
+ Licensor waives and/or agrees not to assert any right or
160
+ authority to forbid You from making technical modifications
161
+ necessary to exercise the Licensed Rights, including
162
+ technical modifications necessary to circumvent Effective
163
+ Technological Measures. For purposes of this Public License,
164
+ simply making modifications authorized by this Section 2(a)
165
+ (4) never produces Adapted Material.
166
+
167
+ 5. Downstream recipients.
168
+
169
+ a. Offer from the Licensor -- Licensed Material. Every
170
+ recipient of the Licensed Material automatically
171
+ receives an offer from the Licensor to exercise the
172
+ Licensed Rights under the terms and conditions of this
173
+ Public License.
174
+
175
+ b. No downstream restrictions. You may not offer or impose
176
+ any additional or different terms or conditions on, or
177
+ apply any Effective Technological Measures to, the
178
+ Licensed Material if doing so restricts exercise of the
179
+ Licensed Rights by any recipient of the Licensed
180
+ Material.
181
+
182
+ 6. No endorsement. Nothing in this Public License constitutes or
183
+ may be construed as permission to assert or imply that You
184
+ are, or that Your use of the Licensed Material is, connected
185
+ with, or sponsored, endorsed, or granted official status by,
186
+ the Licensor or others designated to receive attribution as
187
+ provided in Section 3(a)(1)(A)(i).
188
+
189
+ b. Other rights.
190
+
191
+ 1. Moral rights, such as the right of integrity, are not
192
+ licensed under this Public License, nor are publicity,
193
+ privacy, and/or other similar personality rights; however, to
194
+ the extent possible, the Licensor waives and/or agrees not to
195
+ assert any such rights held by the Licensor to the limited
196
+ extent necessary to allow You to exercise the Licensed
197
+ Rights, but not otherwise.
198
+
199
+ 2. Patent and trademark rights are not licensed under this
200
+ Public License.
201
+
202
+ 3. To the extent possible, the Licensor waives any right to
203
+ collect royalties from You for the exercise of the Licensed
204
+ Rights, whether directly or through a collecting society
205
+ under any voluntary or waivable statutory or compulsory
206
+ licensing scheme. In all other cases the Licensor expressly
207
+ reserves any right to collect such royalties.
208
+
209
+
210
+ Section 3 -- License Conditions.
211
+
212
+ Your exercise of the Licensed Rights is expressly made subject to the
213
+ following conditions.
214
+
215
+ a. Attribution.
216
+
217
+ 1. If You Share the Licensed Material (including in modified
218
+ form), You must:
219
+
220
+ a. retain the following if it is supplied by the Licensor
221
+ with the Licensed Material:
222
+
223
+ i. identification of the creator(s) of the Licensed
224
+ Material and any others designated to receive
225
+ attribution, in any reasonable manner requested by
226
+ the Licensor (including by pseudonym if
227
+ designated);
228
+
229
+ ii. a copyright notice;
230
+
231
+ iii. a notice that refers to this Public License;
232
+
233
+ iv. a notice that refers to the disclaimer of
234
+ warranties;
235
+
236
+ v. a URI or hyperlink to the Licensed Material to the
237
+ extent reasonably practicable;
238
+
239
+ b. indicate if You modified the Licensed Material and
240
+ retain an indication of any previous modifications; and
241
+
242
+ c. indicate the Licensed Material is licensed under this
243
+ Public License, and include the text of, or the URI or
244
+ hyperlink to, this Public License.
245
+
246
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
247
+ reasonable manner based on the medium, means, and context in
248
+ which You Share the Licensed Material. For example, it may be
249
+ reasonable to satisfy the conditions by providing a URI or
250
+ hyperlink to a resource that includes the required
251
+ information.
252
+
253
+ 3. If requested by the Licensor, You must remove any of the
254
+ information required by Section 3(a)(1)(A) to the extent
255
+ reasonably practicable.
256
+
257
+ 4. If You Share Adapted Material You produce, the Adapter's
258
+ License You apply must not prevent recipients of the Adapted
259
+ Material from complying with this Public License.
260
+
261
+
262
+ Section 4 -- Sui Generis Database Rights.
263
+
264
+ Where the Licensed Rights include Sui Generis Database Rights that
265
+ apply to Your use of the Licensed Material:
266
+
267
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
268
+ to extract, reuse, reproduce, and Share all or a substantial
269
+ portion of the contents of the database;
270
+
271
+ b. if You include all or a substantial portion of the database
272
+ contents in a database in which You have Sui Generis Database
273
+ Rights, then the database in which You have Sui Generis Database
274
+ Rights (but not its individual contents) is Adapted Material; and
275
+
276
+ c. You must comply with the conditions in Section 3(a) if You Share
277
+ all or a substantial portion of the contents of the database.
278
+
279
+ For the avoidance of doubt, this Section 4 supplements and does not
280
+ replace Your obligations under this Public License where the Licensed
281
+ Rights include other Copyright and Similar Rights.
282
+
283
+
284
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
285
+
286
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
287
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
288
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
289
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
290
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
291
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
292
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
293
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
294
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
295
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
296
+
297
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
298
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
299
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
300
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
301
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
302
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
303
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
304
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
305
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
306
+
307
+ c. The disclaimer of warranties and limitation of liability provided
308
+ above shall be interpreted in a manner that, to the extent
309
+ possible, most closely approximates an absolute disclaimer and
310
+ waiver of all liability.
311
+
312
+
313
+ Section 6 -- Term and Termination.
314
+
315
+ a. This Public License applies for the term of the Copyright and
316
+ Similar Rights licensed here. However, if You fail to comply with
317
+ this Public License, then Your rights under this Public License
318
+ terminate automatically.
319
+
320
+ b. Where Your right to use the Licensed Material has terminated under
321
+ Section 6(a), it reinstates:
322
+
323
+ 1. automatically as of the date the violation is cured, provided
324
+ it is cured within 30 days of Your discovery of the
325
+ violation; or
326
+
327
+ 2. upon express reinstatement by the Licensor.
328
+
329
+ For the avoidance of doubt, this Section 6(b) does not affect any
330
+ right the Licensor may have to seek remedies for Your violations
331
+ of this Public License.
332
+
333
+ c. For the avoidance of doubt, the Licensor may also offer the
334
+ Licensed Material under separate terms or conditions or stop
335
+ distributing the Licensed Material at any time; however, doing so
336
+ will not terminate this Public License.
337
+
338
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
339
+ License.
340
+
341
+
342
+ Section 7 -- Other Terms and Conditions.
343
+
344
+ a. The Licensor shall not be bound by any additional or different
345
+ terms or conditions communicated by You unless expressly agreed.
346
+
347
+ b. Any arrangements, understandings, or agreements regarding the
348
+ Licensed Material not stated herein are separate from and
349
+ independent of the terms and conditions of this Public License.
350
+
351
+
352
+ Section 8 -- Interpretation.
353
+
354
+ a. For the avoidance of doubt, this Public License does not, and
355
+ shall not be interpreted to, reduce, limit, restrict, or impose
356
+ conditions on any use of the Licensed Material that could lawfully
357
+ be made without permission under this Public License.
358
+
359
+ b. To the extent possible, if any provision of this Public License is
360
+ deemed unenforceable, it shall be automatically reformed to the
361
+ minimum extent necessary to make it enforceable. If the provision
362
+ cannot be reformed, it shall be severed from this Public License
363
+ without affecting the enforceability of the remaining terms and
364
+ conditions.
365
+
366
+ c. No term or condition of this Public License will be waived and no
367
+ failure to comply consented to unless expressly agreed to by the
368
+ Licensor.
369
+
370
+ d. Nothing in this Public License constitutes or may be interpreted
371
+ as a limitation upon, or waiver of, any privileges and immunities
372
+ that apply to the Licensor or You, including from the legal
373
+ processes of any jurisdiction or authority.
374
+
375
+
376
+ =======================================================================
377
+
378
+ Creative Commons is not a party to its public
379
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
380
+ its public licenses to material it publishes and in those instances
381
+ will be considered the “Licensor.” The text of the Creative Commons
382
+ public licenses is dedicated to the public domain under the CC0 Public
383
+ Domain Dedication. Except for the limited purpose of indicating that
384
+ material is shared under a Creative Commons public license or as
385
+ otherwise permitted by the Creative Commons policies published at
386
+ creativecommons.org/policies, Creative Commons does not authorize the
387
+ use of the trademark "Creative Commons" or any other trademark or logo
388
+ of Creative Commons without its prior written consent including,
389
+ without limitation, in connection with any unauthorized modifications
390
+ to any of its public licenses or any other arrangements,
391
+ understandings, or agreements concerning use of licensed material. For
392
+ the avoidance of doubt, this paragraph does not form part of the
393
+ public licenses.
394
+
395
+ Creative Commons may be contacted at creativecommons.org.
README.md CHANGED
@@ -1,12 +1,62 @@
1
  ---
2
- title: Omniparser
3
- emoji: 🔥
4
- colorFrom: yellow
5
- colorTo: purple
6
  sdk: gradio
7
  sdk_version: 5.4.0
8
- app_file: app.py
9
- pinned: false
10
  ---
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: omniparser
3
+ app_file: gradio_demo.py
 
 
4
  sdk: gradio
5
  sdk_version: 5.4.0
 
 
6
  ---
7
+ # OmniParser: Screen Parsing tool for Pure Vision Based GUI Agent
8
 
9
+ <p align="center">
10
+ <img src="imgs/logo.png" alt="Logo">
11
+ </p>
12
+
13
+ [![arXiv](https://img.shields.io/badge/Paper-green)](https://arxiv.org/abs/2408.00203)
14
+ [![License](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
15
+
16
+ 📢 [[Project Page](https://microsoft.github.io/OmniParser/)] [[Blog Post](https://www.microsoft.com/en-us/research/articles/omniparser-for-pure-vision-based-gui-agent/)] [[Models](https://huggingface.co/microsoft/OmniParser)]
17
+
18
+ **OmniParser** is a comprehensive method for parsing user interface screenshots into structured and easy-to-understand elements, which significantly enhances the ability of GPT-4V to generate actions that can be accurately grounded in the corresponding regions of the interface.
19
+
20
+ ## News
21
+ - [2024/10] Both Interactive Region Detection Model and Icon functional description model are released! [Hugginface models](https://huggingface.co/microsoft/OmniParser)
22
+ - [2024/09] OmniParser achieves the best performance on [Windows Agent Arena](https://microsoft.github.io/WindowsAgentArena/)!
23
+
24
+ ## Install
25
+ Install environment:
26
+ ```python
27
+ conda create -n "omni" python==3.12
28
+ conda activate omni
29
+ pip install -r requirements.txt
30
+ ```
31
+
32
+ Then download the model ckpts files in: https://huggingface.co/microsoft/OmniParser, and put them under weights/, default folder structure is: weights/icon_detect, weights/icon_caption_florence, weights/icon_caption_blip2.
33
+
34
+ Finally, convert the safetensor to .pt file.
35
+ ```python
36
+ python weights/convert_safetensor_to_pt.py
37
+ ```
38
+
39
+ ## Examples:
40
+ We put together a few simple examples in the demo.ipynb.
41
+
42
+ ## Gradio Demo
43
+ To run gradio demo, simply run:
44
+ ```python
45
+ python gradio_demo.py
46
+ ```
47
+
48
+
49
+ ## 📚 Citation
50
+ Our technical report can be found [here](https://arxiv.org/abs/2408.00203).
51
+ If you find our work useful, please consider citing our work:
52
+ ```
53
+ @misc{lu2024omniparserpurevisionbased,
54
+ title={OmniParser for Pure Vision Based GUI Agent},
55
+ author={Yadong Lu and Jianwei Yang and Yelong Shen and Ahmed Awadallah},
56
+ year={2024},
57
+ eprint={2408.00203},
58
+ archivePrefix={arXiv},
59
+ primaryClass={cs.CV},
60
+ url={https://arxiv.org/abs/2408.00203},
61
+ }
62
+ ```
SECURITY.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
2
+
3
+ ## Security
4
+
5
+ Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
6
+
7
+ If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
8
+
9
+ ## Reporting Security Issues
10
+
11
+ **Please do not report security vulnerabilities through public GitHub issues.**
12
+
13
+ Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
14
+
15
+ If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
16
+
17
+ You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
18
+
19
+ Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
20
+
21
+ * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
22
+ * Full paths of source file(s) related to the manifestation of the issue
23
+ * The location of the affected source code (tag/branch/commit or direct URL)
24
+ * Any special configuration required to reproduce the issue
25
+ * Step-by-step instructions to reproduce the issue
26
+ * Proof-of-concept or exploit code (if possible)
27
+ * Impact of the issue, including how an attacker might exploit the issue
28
+
29
+ This information will help us triage your report more quickly.
30
+
31
+ If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
32
+
33
+ ## Preferred Languages
34
+
35
+ We prefer all communications to be in English.
36
+
37
+ ## Policy
38
+
39
+ Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
40
+
41
+ <!-- END MICROSOFT SECURITY.MD BLOCK -->
demo.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
gradio_demo.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+
3
+ import gradio as gr
4
+ import numpy as np
5
+ import torch
6
+ from PIL import Image
7
+ import io
8
+
9
+
10
+ import base64, os
11
+ from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
12
+ import torch
13
+ from PIL import Image
14
+
15
+ yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
16
+ caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
17
+ platform = 'pc'
18
+ if platform == 'pc':
19
+ draw_bbox_config = {
20
+ 'text_scale': 0.8,
21
+ 'text_thickness': 2,
22
+ 'text_padding': 2,
23
+ 'thickness': 2,
24
+ }
25
+ elif platform == 'web':
26
+ draw_bbox_config = {
27
+ 'text_scale': 0.8,
28
+ 'text_thickness': 2,
29
+ 'text_padding': 3,
30
+ 'thickness': 3,
31
+ }
32
+ elif platform == 'mobile':
33
+ draw_bbox_config = {
34
+ 'text_scale': 0.8,
35
+ 'text_thickness': 2,
36
+ 'text_padding': 3,
37
+ 'thickness': 3,
38
+ }
39
+
40
+
41
+
42
+ MARKDOWN = """
43
+ # OmniParser for Pure Vision Based General GUI Agent 🔥
44
+ <div>
45
+ <a href="https://arxiv.org/pdf/2408.00203">
46
+ <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
47
+ </a>
48
+ </div>
49
+
50
+ OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
51
+ """
52
+
53
+ DEVICE = torch.device('cuda')
54
+
55
+ # @spaces.GPU
56
+ # @torch.inference_mode()
57
+ # @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
58
+ def process(
59
+ image_input,
60
+ box_threshold,
61
+ iou_threshold
62
+ ) -> Optional[Image.Image]:
63
+
64
+ image_save_path = 'imgs/saved_image_demo.png'
65
+ image_input.save(image_save_path)
66
+ # import pdb; pdb.set_trace()
67
+
68
+ ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
69
+ text, ocr_bbox = ocr_bbox_rslt
70
+ # print('prompt:', prompt)
71
+ dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold)
72
+ image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
73
+ print('finish processing')
74
+ parsed_content_list = '\n'.join(parsed_content_list)
75
+ return image, str(parsed_content_list)
76
+
77
+
78
+
79
+ with gr.Blocks() as demo:
80
+ gr.Markdown(MARKDOWN)
81
+ with gr.Row():
82
+ with gr.Column():
83
+ image_input_component = gr.Image(
84
+ type='pil', label='Upload image')
85
+ # set the threshold for removing the bounding boxes with low confidence, default is 0.05
86
+ box_threshold_component = gr.Slider(
87
+ label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
88
+ # set the threshold for removing the bounding boxes with large overlap, default is 0.1
89
+ iou_threshold_component = gr.Slider(
90
+ label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
91
+ submit_button_component = gr.Button(
92
+ value='Submit', variant='primary')
93
+ with gr.Column():
94
+ image_output_component = gr.Image(type='pil', label='Image Output')
95
+ text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
96
+
97
+ submit_button_component.click(
98
+ fn=process,
99
+ inputs=[
100
+ image_input_component,
101
+ box_threshold_component,
102
+ iou_threshold_component
103
+ ],
104
+ outputs=[image_output_component, text_output_component]
105
+ )
106
+
107
+ # demo.launch(debug=False, show_error=True, share=True)
108
+ demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
imgs/google_page.png ADDED
imgs/logo.png ADDED
imgs/saved_image_demo.png ADDED
imgs/windows_home.png ADDED

Git LFS Details

  • SHA256: 036008abc32379393876e722fedab2bd02bda9b667b957bc150c2f83c725ebac
  • Pointer size: 132 Bytes
  • Size of remote file: 6.1 MB
imgs/windows_multitab.png ADDED
omniparser.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils import get_som_labeled_img, check_ocr_box, get_caption_model_processor, get_dino_model, get_yolo_model
2
+ import torch
3
+ from ultralytics import YOLO
4
+ from PIL import Image
5
+ from typing import Dict, Tuple, List
6
+ import io
7
+ import base64
8
+
9
+
10
+ config = {
11
+ 'som_model_path': 'finetuned_icon_detect.pt',
12
+ 'device': 'cpu',
13
+ 'caption_model_path': 'Salesforce/blip2-opt-2.7b',
14
+ 'draw_bbox_config': {
15
+ 'text_scale': 0.8,
16
+ 'text_thickness': 2,
17
+ 'text_padding': 3,
18
+ 'thickness': 3,
19
+ },
20
+ 'BOX_TRESHOLD': 0.05
21
+ }
22
+
23
+
24
+ class Omniparser(object):
25
+ def __init__(self, config: Dict):
26
+ self.config = config
27
+
28
+ self.som_model = get_yolo_model(model_path=config['som_model_path'])
29
+ # self.caption_model_processor = get_caption_model_processor(config['caption_model_path'], device=cofig['device'])
30
+ # self.caption_model_processor['model'].to(torch.float32)
31
+
32
+ def parse(self, image_path: str):
33
+ print('Parsing image:', image_path)
34
+ ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
35
+ text, ocr_bbox = ocr_bbox_rslt
36
+
37
+ draw_bbox_config = self.config['draw_bbox_config']
38
+ BOX_TRESHOLD = self.config['BOX_TRESHOLD']
39
+ dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_path, self.som_model, BOX_TRESHOLD = BOX_TRESHOLD, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=None, ocr_text=text,use_local_semantics=False)
40
+
41
+ image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
42
+ # formating output
43
+ return_list = [{'from': 'omniparser', 'shape': {'x':coord[0], 'y':coord[1], 'width':coord[2], 'height':coord[3]},
44
+ 'text': parsed_content_list[i].split(': ')[1], 'type':'text'} for i, (k, coord) in enumerate(label_coordinates.items()) if i < len(parsed_content_list)]
45
+ return_list.extend(
46
+ [{'from': 'omniparser', 'shape': {'x':coord[0], 'y':coord[1], 'width':coord[2], 'height':coord[3]},
47
+ 'text': 'None', 'type':'icon'} for i, (k, coord) in enumerate(label_coordinates.items()) if i >= len(parsed_content_list)]
48
+ )
49
+
50
+ return [image, return_list]
51
+
52
+ parser = Omniparser(config)
53
+ image_path = 'examples/pc_1.png'
54
+
55
+ # time the parser
56
+ import time
57
+ s = time.time()
58
+ image, parsed_content_list = parser.parse(image_path)
59
+ device = config['device']
60
+ print(f'Time taken for Omniparser on {device}:', time.time() - s)
requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ easyocr
3
+ torchvision
4
+ supervision==0.18.0
5
+ openai==1.3.5
6
+ transformers
7
+ ultralytics==8.1.24
8
+ azure-identity
9
+ numpy
10
+ opencv-python
11
+ opencv-python-headless
12
+ gradio
13
+ dill
14
+ accelerate
15
+ timm
16
+ einops==0.8.0
util/__init__.py ADDED
File without changes
util/action_matching.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Adapted from https://github.com/google-research/google-research/tree/master/android_in_the_wild
3
+ '''
4
+
5
+ import jax
6
+ import jax.numpy as jnp
7
+ import numpy as np
8
+
9
+ # import action_type as action_type_lib
10
+ import enum
11
+
12
+ class ActionType(enum.IntEnum):
13
+ # Placeholders for unused enum values
14
+ UNUSED_0 = 0
15
+ UNUSED_1 = 1
16
+ UNUSED_2 = 2
17
+ UNUSED_8 = 8
18
+ UNUSED_9 = 9
19
+
20
+ ########### Agent actions ###########
21
+
22
+ # A type action that sends text to the emulator. Note that this simply sends
23
+ # text and does not perform any clicks for element focus or enter presses for
24
+ # submitting text.
25
+ TYPE = 3
26
+
27
+ # The dual point action used to represent all gestures.
28
+ DUAL_POINT = 4
29
+
30
+ # These actions differentiate pressing the home and back button from touches.
31
+ # They represent explicit presses of back and home performed using ADB.
32
+ PRESS_BACK = 5
33
+ PRESS_HOME = 6
34
+
35
+ # An action representing that ADB command for hitting enter was performed.
36
+ PRESS_ENTER = 7
37
+
38
+ ########### Episode status actions ###########
39
+
40
+ # An action used to indicate the desired task has been completed and resets
41
+ # the environment. This action should also be used in the case that the task
42
+ # has already been completed and there is nothing to do.
43
+ # e.g. The task is to turn on the Wi-Fi when it is already on
44
+ STATUS_TASK_COMPLETE = 10
45
+
46
+ # An action used to indicate that desired task is impossible to complete and
47
+ # resets the environment. This can be a result of many different things
48
+ # including UI changes, Android version differences, etc.
49
+ STATUS_TASK_IMPOSSIBLE = 11
50
+
51
+
52
+ _TAP_DISTANCE_THRESHOLD = 0.14 # Fraction of the screen
53
+ ANNOTATION_WIDTH_AUGMENT_FRACTION = 1.4
54
+ ANNOTATION_HEIGHT_AUGMENT_FRACTION = 1.4
55
+
56
+ # Interval determining if an action is a tap or a swipe.
57
+ _SWIPE_DISTANCE_THRESHOLD = 0.04
58
+
59
+
60
+ def _yx_in_bounding_boxes(
61
+ yx, bounding_boxes
62
+ ):
63
+ """Check if the (y,x) point is contained in each bounding box.
64
+
65
+ Args:
66
+ yx: The (y, x) coordinate in pixels of the point.
67
+ bounding_boxes: A 2D int array of shape (num_bboxes, 4), where each row
68
+ represents a bounding box: (y_top_left, x_top_left, box_height,
69
+ box_width). Note: containment is inclusive of the bounding box edges.
70
+
71
+ Returns:
72
+ is_inside: A 1D bool array where each element specifies if the point is
73
+ contained within the respective box.
74
+ """
75
+ y, x = yx
76
+
77
+ # `bounding_boxes` has shape (n_elements, 4); we extract each array along the
78
+ # last axis into shape (n_elements, 1), then squeeze unneeded dimension.
79
+ top, left, height, width = [
80
+ jnp.squeeze(v, axis=-1) for v in jnp.split(bounding_boxes, 4, axis=-1)
81
+ ]
82
+
83
+ # The y-axis is inverted for AndroidEnv, so bottom = top + height.
84
+ bottom, right = top + height, left + width
85
+
86
+ return jnp.logical_and(y >= top, y <= bottom) & jnp.logical_and(
87
+ x >= left, x <= right)
88
+
89
+
90
+ def _resize_annotation_bounding_boxes(
91
+ annotation_positions, annotation_width_augment_fraction,
92
+ annotation_height_augment_fraction):
93
+ """Resize the bounding boxes by the given fractions.
94
+
95
+ Args:
96
+ annotation_positions: Array of shape (N, 4), where each row represents the
97
+ (y, x, height, width) of the bounding boxes.
98
+ annotation_width_augment_fraction: The fraction to augment the box widths,
99
+ E.g., 1.4 == 240% total increase.
100
+ annotation_height_augment_fraction: Same as described for width, but for box
101
+ height.
102
+
103
+ Returns:
104
+ Resized bounding box.
105
+
106
+ """
107
+ height_change = (
108
+ annotation_height_augment_fraction * annotation_positions[:, 2])
109
+ width_change = (
110
+ annotation_width_augment_fraction * annotation_positions[:, 3])
111
+
112
+ # Limit bounding box positions to the screen.
113
+ resized_annotations = jnp.stack([
114
+ jnp.maximum(0, annotation_positions[:, 0] - (height_change / 2)),
115
+ jnp.maximum(0, annotation_positions[:, 1] - (width_change / 2)),
116
+ jnp.minimum(1, annotation_positions[:, 2] + height_change),
117
+ jnp.minimum(1, annotation_positions[:, 3] + width_change),
118
+ ],
119
+ axis=1)
120
+ return resized_annotations
121
+
122
+
123
+ def is_tap_action(normalized_start_yx,
124
+ normalized_end_yx):
125
+ distance = jnp.linalg.norm(
126
+ jnp.array(normalized_start_yx) - jnp.array(normalized_end_yx))
127
+ return distance <= _SWIPE_DISTANCE_THRESHOLD
128
+
129
+
130
+ def _is_non_dual_point_action(action_type):
131
+ return jnp.not_equal(action_type, ActionType.DUAL_POINT)
132
+
133
+
134
+ def _check_tap_actions_match(
135
+ tap_1_yx,
136
+ tap_2_yx,
137
+ annotation_positions,
138
+ matching_tap_distance_threshold_screen_percentage,
139
+ annotation_width_augment_fraction,
140
+ annotation_height_augment_fraction,
141
+ ):
142
+ """Determines if two tap actions are the same."""
143
+ resized_annotation_positions = _resize_annotation_bounding_boxes(
144
+ annotation_positions,
145
+ annotation_width_augment_fraction,
146
+ annotation_height_augment_fraction,
147
+ )
148
+
149
+ # Check if the ground truth tap action falls in an annotation's bounding box.
150
+ tap1_in_box = _yx_in_bounding_boxes(tap_1_yx, resized_annotation_positions)
151
+ tap2_in_box = _yx_in_bounding_boxes(tap_2_yx, resized_annotation_positions)
152
+ both_in_box = jnp.max(tap1_in_box & tap2_in_box)
153
+
154
+ # If the ground-truth tap action falls outside any of the annotation
155
+ # bounding boxes or one of the actions is inside a bounding box and the other
156
+ # is outside bounding box or vice versa, compare the points using Euclidean
157
+ # distance.
158
+ within_threshold = (
159
+ jnp.linalg.norm(jnp.array(tap_1_yx) - jnp.array(tap_2_yx))
160
+ <= matching_tap_distance_threshold_screen_percentage
161
+ )
162
+ return jnp.logical_or(both_in_box, within_threshold)
163
+
164
+
165
+ def _check_drag_actions_match(
166
+ drag_1_touch_yx,
167
+ drag_1_lift_yx,
168
+ drag_2_touch_yx,
169
+ drag_2_lift_yx,
170
+ ):
171
+ """Determines if two drag actions are the same."""
172
+ # Store drag deltas (the change in the y and x coordinates from touch to
173
+ # lift), magnitudes, and the index of the main axis, which is the axis with
174
+ # the greatest change in coordinate value (e.g. a drag starting at (0, 0) and
175
+ # ending at (0.3, 0.5) has a main axis index of 1).
176
+ drag_1_deltas = drag_1_lift_yx - drag_1_touch_yx
177
+ drag_1_magnitudes = jnp.abs(drag_1_deltas)
178
+ drag_1_main_axis = np.argmax(drag_1_magnitudes)
179
+ drag_2_deltas = drag_2_lift_yx - drag_2_touch_yx
180
+ drag_2_magnitudes = jnp.abs(drag_2_deltas)
181
+ drag_2_main_axis = np.argmax(drag_2_magnitudes)
182
+
183
+ return jnp.equal(drag_1_main_axis, drag_2_main_axis)
184
+
185
+
186
+ def check_actions_match(
187
+ action_1_touch_yx,
188
+ action_1_lift_yx,
189
+ action_1_action_type,
190
+ action_2_touch_yx,
191
+ action_2_lift_yx,
192
+ action_2_action_type,
193
+ annotation_positions,
194
+ tap_distance_threshold = _TAP_DISTANCE_THRESHOLD,
195
+ annotation_width_augment_fraction = ANNOTATION_WIDTH_AUGMENT_FRACTION,
196
+ annotation_height_augment_fraction = ANNOTATION_HEIGHT_AUGMENT_FRACTION,
197
+ ):
198
+ """Determines if two actions are considered to be the same.
199
+
200
+ Two actions being "the same" is defined here as two actions that would result
201
+ in a similar screen state.
202
+
203
+ Args:
204
+ action_1_touch_yx: The (y, x) coordinates of the first action's touch.
205
+ action_1_lift_yx: The (y, x) coordinates of the first action's lift.
206
+ action_1_action_type: The action type of the first action.
207
+ action_2_touch_yx: The (y, x) coordinates of the second action's touch.
208
+ action_2_lift_yx: The (y, x) coordinates of the second action's lift.
209
+ action_2_action_type: The action type of the second action.
210
+ annotation_positions: The positions of the UI annotations for the screen. It
211
+ is A 2D int array of shape (num_bboxes, 4), where each row represents a
212
+ bounding box: (y_top_left, x_top_left, box_height, box_width). Note that
213
+ containment is inclusive of the bounding box edges.
214
+ tap_distance_threshold: The threshold that determines if two taps result in
215
+ a matching screen state if they don't fall the same bounding boxes.
216
+ annotation_width_augment_fraction: The fraction to increase the width of the
217
+ bounding box by.
218
+ annotation_height_augment_fraction: The fraction to increase the height of
219
+ of the bounding box by.
220
+
221
+ Returns:
222
+ A boolean representing whether the two given actions are the same or not.
223
+ """
224
+ action_1_touch_yx = jnp.asarray(action_1_touch_yx)
225
+ action_1_lift_yx = jnp.asarray(action_1_lift_yx)
226
+ action_2_touch_yx = jnp.asarray(action_2_touch_yx)
227
+ action_2_lift_yx = jnp.asarray(action_2_lift_yx)
228
+
229
+ # Checks if at least one of the actions is global (i.e. not DUAL_POINT),
230
+ # because if that is the case, only the actions' types need to be compared.
231
+ has_non_dual_point_action = jnp.logical_or(
232
+ _is_non_dual_point_action(action_1_action_type),
233
+ _is_non_dual_point_action(action_2_action_type),
234
+ )
235
+ #print("non dual point: "+str(has_non_dual_point_action))
236
+
237
+ different_dual_point_types = jnp.logical_xor(
238
+ is_tap_action(action_1_touch_yx, action_1_lift_yx),
239
+ is_tap_action(action_2_touch_yx, action_2_lift_yx),
240
+ )
241
+ #print("different dual type: "+str(different_dual_point_types))
242
+
243
+ is_tap = jnp.logical_and(
244
+ is_tap_action(action_1_touch_yx, action_1_lift_yx),
245
+ is_tap_action(action_2_touch_yx, action_2_lift_yx),
246
+ )
247
+ #print("is tap: "+str(is_tap))
248
+
249
+ taps_match = _check_tap_actions_match(
250
+ action_1_touch_yx,
251
+ action_2_touch_yx,
252
+ annotation_positions,
253
+ tap_distance_threshold,
254
+ annotation_width_augment_fraction,
255
+ annotation_height_augment_fraction,
256
+ )
257
+ #print("tap match: "+str(taps_match))
258
+
259
+ taps_match = jnp.logical_and(is_tap, taps_match)
260
+ #print("tap match: "+str(taps_match))
261
+
262
+ drags_match = _check_drag_actions_match(
263
+ action_1_touch_yx, action_1_lift_yx, action_2_touch_yx, action_2_lift_yx
264
+ )
265
+ drags_match = jnp.where(is_tap, False, drags_match)
266
+ #print("drag match: "+str(drags_match))
267
+
268
+ return jnp.where(
269
+ has_non_dual_point_action,
270
+ jnp.equal(action_1_action_type, action_2_action_type),
271
+ jnp.where(
272
+ different_dual_point_types,
273
+ False,
274
+ jnp.logical_or(taps_match, drags_match),
275
+ ),
276
+ )
277
+
278
+
279
+ def action_2_format(step_data):
280
+ # 把test数据集中的动作格式转换为计算matching score的格式
281
+ action_type = step_data["action_type_id"]
282
+
283
+ if action_type == 4:
284
+ if step_data["action_type_text"] == 'click': # 点击
285
+ touch_point = step_data["touch"]
286
+ lift_point = step_data["lift"]
287
+ else: # 上下左右滑动
288
+ if step_data["action_type_text"] == 'scroll down':
289
+ touch_point = [0.5, 0.8]
290
+ lift_point = [0.5, 0.2]
291
+ elif step_data["action_type_text"] == 'scroll up':
292
+ touch_point = [0.5, 0.2]
293
+ lift_point = [0.5, 0.8]
294
+ elif step_data["action_type_text"] == 'scroll left':
295
+ touch_point = [0.2, 0.5]
296
+ lift_point = [0.8, 0.5]
297
+ elif step_data["action_type_text"] == 'scroll right':
298
+ touch_point = [0.8, 0.5]
299
+ lift_point = [0.2, 0.5]
300
+ else:
301
+ touch_point = [-1.0, -1.0]
302
+ lift_point = [-1.0, -1.0]
303
+
304
+ if action_type == 3:
305
+ typed_text = step_data["type_text"]
306
+ else:
307
+ typed_text = ""
308
+
309
+ action = {"action_type": action_type, "touch_point": touch_point, "lift_point": lift_point,
310
+ "typed_text": typed_text}
311
+
312
+ action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
313
+ action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
314
+ action["typed_text"] = action["typed_text"].lower()
315
+
316
+ return action
317
+
318
+
319
+ def pred_2_format(step_data):
320
+ # 把模型输出的内容转换为计算action_matching的格式
321
+ action_type = step_data["action_type"]
322
+
323
+ if action_type == 4: # 点击
324
+ action_type_new = 4
325
+ touch_point = step_data["click_point"]
326
+ lift_point = step_data["click_point"]
327
+ typed_text = ""
328
+ elif action_type == 0:
329
+ action_type_new = 4
330
+ touch_point = [0.5, 0.8]
331
+ lift_point = [0.5, 0.2]
332
+ typed_text = ""
333
+ elif action_type == 1:
334
+ action_type_new = 4
335
+ touch_point = [0.5, 0.2]
336
+ lift_point = [0.5, 0.8]
337
+ typed_text = ""
338
+ elif action_type == 8:
339
+ action_type_new = 4
340
+ touch_point = [0.2, 0.5]
341
+ lift_point = [0.8, 0.5]
342
+ typed_text = ""
343
+ elif action_type == 9:
344
+ action_type_new = 4
345
+ touch_point = [0.8, 0.5]
346
+ lift_point = [0.2, 0.5]
347
+ typed_text = ""
348
+ else:
349
+ action_type_new = action_type
350
+ touch_point = [-1.0, -1.0]
351
+ lift_point = [-1.0, -1.0]
352
+ typed_text = ""
353
+ if action_type_new == 3:
354
+ typed_text = step_data["typed_text"]
355
+
356
+ action = {"action_type": action_type_new, "touch_point": touch_point, "lift_point": lift_point,
357
+ "typed_text": typed_text}
358
+
359
+ action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
360
+ action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
361
+ action["typed_text"] = action["typed_text"].lower()
362
+
363
+ return action
364
+
365
+
366
+ def pred_2_format_simplified(step_data):
367
+ # 把模型输出的内容转换为计算action_matching的格式
368
+ action_type = step_data["action_type"]
369
+
370
+ if action_type == 'click' : # 点击
371
+ action_type_new = 4
372
+ touch_point = step_data["click_point"]
373
+ lift_point = step_data["click_point"]
374
+ typed_text = ""
375
+ elif action_type == 'scroll' and step_data["direction"] == 'down':
376
+ action_type_new = 4
377
+ touch_point = [0.5, 0.8]
378
+ lift_point = [0.5, 0.2]
379
+ typed_text = ""
380
+ elif action_type == 'scroll' and step_data["direction"] == 'up':
381
+ action_type_new = 4
382
+ touch_point = [0.5, 0.2]
383
+ lift_point = [0.5, 0.8]
384
+ typed_text = ""
385
+ elif action_type == 'scroll' and step_data["direction"] == 'left':
386
+ action_type_new = 4
387
+ touch_point = [0.2, 0.5]
388
+ lift_point = [0.8, 0.5]
389
+ typed_text = ""
390
+ elif action_type == 'scroll' and step_data["direction"] == 'right':
391
+ action_type_new = 4
392
+ touch_point = [0.8, 0.5]
393
+ lift_point = [0.2, 0.5]
394
+ typed_text = ""
395
+ elif action_type == 'type':
396
+ action_type_new = 3
397
+ touch_point = [-1.0, -1.0]
398
+ lift_point = [-1.0, -1.0]
399
+ typed_text = step_data["text"]
400
+ elif action_type == 'navigate_back':
401
+ action_type_new = 5
402
+ touch_point = [-1.0, -1.0]
403
+ lift_point = [-1.0, -1.0]
404
+ typed_text = ""
405
+ elif action_type == 'navigate_home':
406
+ action_type_new = 6
407
+ touch_point = [-1.0, -1.0]
408
+ lift_point = [-1.0, -1.0]
409
+ typed_text = ""
410
+ else:
411
+ action_type_new = action_type
412
+ touch_point = [-1.0, -1.0]
413
+ lift_point = [-1.0, -1.0]
414
+ typed_text = ""
415
+ # if action_type_new == 'type':
416
+ # typed_text = step_data["text"]
417
+
418
+ action = {"action_type": action_type_new, "touch_point": touch_point, "lift_point": lift_point,
419
+ "typed_text": typed_text}
420
+
421
+ action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
422
+ action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
423
+ action["typed_text"] = action["typed_text"].lower()
424
+
425
+ return action
util/action_type.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Adapted from https://github.com/google-research/google-research/tree/master/android_in_the_wild
3
+ '''
4
+
5
+ import enum
6
+
7
+ class ActionType(enum.IntEnum):
8
+
9
+ # Placeholders for unused enum values
10
+ UNUSED_0 = 0
11
+ UNUSED_1 = 1
12
+ UNUSED_2 = 2
13
+ UNUSED_8 = 8
14
+ UNUSED_9 = 9
15
+
16
+ ########### Agent actions ###########
17
+
18
+ # A type action that sends text to the emulator. Note that this simply sends
19
+ # text and does not perform any clicks for element focus or enter presses for
20
+ # submitting text.
21
+ TYPE = 3
22
+
23
+ # The dual point action used to represent all gestures.
24
+ DUAL_POINT = 4
25
+
26
+ # These actions differentiate pressing the home and back button from touches.
27
+ # They represent explicit presses of back and home performed using ADB.
28
+ PRESS_BACK = 5
29
+ PRESS_HOME = 6
30
+
31
+ # An action representing that ADB command for hitting enter was performed.
32
+ PRESS_ENTER = 7
33
+
34
+ ########### Episode status actions ###########
35
+
36
+ # An action used to indicate the desired task has been completed and resets
37
+ # the environment. This action should also be used in the case that the task
38
+ # has already been completed and there is nothing to do.
39
+ # e.g. The task is to turn on the Wi-Fi when it is already on
40
+ STATUS_TASK_COMPLETE = 10
41
+
42
+ # An action used to indicate that desired task is impossible to complete and
43
+ # resets the environment. This can be a result of many different things
44
+ # including UI changes, Android version differences, etc.
45
+ STATUS_TASK_IMPOSSIBLE = 11
util/box_annotator.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Union, Tuple
2
+
3
+ import cv2
4
+ import numpy as np
5
+
6
+ from supervision.detection.core import Detections
7
+ from supervision.draw.color import Color, ColorPalette
8
+
9
+
10
+ class BoxAnnotator:
11
+ """
12
+ A class for drawing bounding boxes on an image using detections provided.
13
+
14
+ Attributes:
15
+ color (Union[Color, ColorPalette]): The color to draw the bounding box,
16
+ can be a single color or a color palette
17
+ thickness (int): The thickness of the bounding box lines, default is 2
18
+ text_color (Color): The color of the text on the bounding box, default is white
19
+ text_scale (float): The scale of the text on the bounding box, default is 0.5
20
+ text_thickness (int): The thickness of the text on the bounding box,
21
+ default is 1
22
+ text_padding (int): The padding around the text on the bounding box,
23
+ default is 5
24
+
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ color: Union[Color, ColorPalette] = ColorPalette.DEFAULT,
30
+ thickness: int = 3, # 1 for seeclick 2 for mind2web and 3 for demo
31
+ text_color: Color = Color.BLACK,
32
+ text_scale: float = 0.5, # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
33
+ text_thickness: int = 2, #1, # 2 for demo
34
+ text_padding: int = 10,
35
+ avoid_overlap: bool = True,
36
+ ):
37
+ self.color: Union[Color, ColorPalette] = color
38
+ self.thickness: int = thickness
39
+ self.text_color: Color = text_color
40
+ self.text_scale: float = text_scale
41
+ self.text_thickness: int = text_thickness
42
+ self.text_padding: int = text_padding
43
+ self.avoid_overlap: bool = avoid_overlap
44
+
45
+ def annotate(
46
+ self,
47
+ scene: np.ndarray,
48
+ detections: Detections,
49
+ labels: Optional[List[str]] = None,
50
+ skip_label: bool = False,
51
+ image_size: Optional[Tuple[int, int]] = None,
52
+ ) -> np.ndarray:
53
+ """
54
+ Draws bounding boxes on the frame using the detections provided.
55
+
56
+ Args:
57
+ scene (np.ndarray): The image on which the bounding boxes will be drawn
58
+ detections (Detections): The detections for which the
59
+ bounding boxes will be drawn
60
+ labels (Optional[List[str]]): An optional list of labels
61
+ corresponding to each detection. If `labels` are not provided,
62
+ corresponding `class_id` will be used as label.
63
+ skip_label (bool): Is set to `True`, skips bounding box label annotation.
64
+ Returns:
65
+ np.ndarray: The image with the bounding boxes drawn on it
66
+
67
+ Example:
68
+ ```python
69
+ import supervision as sv
70
+
71
+ classes = ['person', ...]
72
+ image = ...
73
+ detections = sv.Detections(...)
74
+
75
+ box_annotator = sv.BoxAnnotator()
76
+ labels = [
77
+ f"{classes[class_id]} {confidence:0.2f}"
78
+ for _, _, confidence, class_id, _ in detections
79
+ ]
80
+ annotated_frame = box_annotator.annotate(
81
+ scene=image.copy(),
82
+ detections=detections,
83
+ labels=labels
84
+ )
85
+ ```
86
+ """
87
+ font = cv2.FONT_HERSHEY_SIMPLEX
88
+ for i in range(len(detections)):
89
+ x1, y1, x2, y2 = detections.xyxy[i].astype(int)
90
+ class_id = (
91
+ detections.class_id[i] if detections.class_id is not None else None
92
+ )
93
+ idx = class_id if class_id is not None else i
94
+ color = (
95
+ self.color.by_idx(idx)
96
+ if isinstance(self.color, ColorPalette)
97
+ else self.color
98
+ )
99
+ cv2.rectangle(
100
+ img=scene,
101
+ pt1=(x1, y1),
102
+ pt2=(x2, y2),
103
+ color=color.as_bgr(),
104
+ thickness=self.thickness,
105
+ )
106
+ if skip_label:
107
+ continue
108
+
109
+ text = (
110
+ f"{class_id}"
111
+ if (labels is None or len(detections) != len(labels))
112
+ else labels[i]
113
+ )
114
+
115
+ text_width, text_height = cv2.getTextSize(
116
+ text=text,
117
+ fontFace=font,
118
+ fontScale=self.text_scale,
119
+ thickness=self.text_thickness,
120
+ )[0]
121
+
122
+ if not self.avoid_overlap:
123
+ text_x = x1 + self.text_padding
124
+ text_y = y1 - self.text_padding
125
+
126
+ text_background_x1 = x1
127
+ text_background_y1 = y1 - 2 * self.text_padding - text_height
128
+
129
+ text_background_x2 = x1 + 2 * self.text_padding + text_width
130
+ text_background_y2 = y1
131
+ # text_x = x1 - self.text_padding - text_width
132
+ # text_y = y1 + self.text_padding + text_height
133
+ # text_background_x1 = x1 - 2 * self.text_padding - text_width
134
+ # text_background_y1 = y1
135
+ # text_background_x2 = x1
136
+ # text_background_y2 = y1 + 2 * self.text_padding + text_height
137
+ else:
138
+ text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2 = get_optimal_label_pos(self.text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size)
139
+
140
+ cv2.rectangle(
141
+ img=scene,
142
+ pt1=(text_background_x1, text_background_y1),
143
+ pt2=(text_background_x2, text_background_y2),
144
+ color=color.as_bgr(),
145
+ thickness=cv2.FILLED,
146
+ )
147
+ # import pdb; pdb.set_trace()
148
+ box_color = color.as_rgb()
149
+ luminance = 0.299 * box_color[0] + 0.587 * box_color[1] + 0.114 * box_color[2]
150
+ text_color = (0,0,0) if luminance > 160 else (255,255,255)
151
+ cv2.putText(
152
+ img=scene,
153
+ text=text,
154
+ org=(text_x, text_y),
155
+ fontFace=font,
156
+ fontScale=self.text_scale,
157
+ # color=self.text_color.as_rgb(),
158
+ color=text_color,
159
+ thickness=self.text_thickness,
160
+ lineType=cv2.LINE_AA,
161
+ )
162
+ return scene
163
+
164
+
165
+ def box_area(box):
166
+ return (box[2] - box[0]) * (box[3] - box[1])
167
+
168
+ def intersection_area(box1, box2):
169
+ x1 = max(box1[0], box2[0])
170
+ y1 = max(box1[1], box2[1])
171
+ x2 = min(box1[2], box2[2])
172
+ y2 = min(box1[3], box2[3])
173
+ return max(0, x2 - x1) * max(0, y2 - y1)
174
+
175
+ def IoU(box1, box2, return_max=True):
176
+ intersection = intersection_area(box1, box2)
177
+ union = box_area(box1) + box_area(box2) - intersection
178
+ if box_area(box1) > 0 and box_area(box2) > 0:
179
+ ratio1 = intersection / box_area(box1)
180
+ ratio2 = intersection / box_area(box2)
181
+ else:
182
+ ratio1, ratio2 = 0, 0
183
+ if return_max:
184
+ return max(intersection / union, ratio1, ratio2)
185
+ else:
186
+ return intersection / union
187
+
188
+
189
+ def get_optimal_label_pos(text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size):
190
+ """ check overlap of text and background detection box, and get_optimal_label_pos,
191
+ pos: str, position of the text, must be one of 'top left', 'top right', 'outer left', 'outer right' TODO: if all are overlapping, return the last one, i.e. outer right
192
+ Threshold: default to 0.3
193
+ """
194
+
195
+ def get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size):
196
+ is_overlap = False
197
+ for i in range(len(detections)):
198
+ detection = detections.xyxy[i].astype(int)
199
+ if IoU([text_background_x1, text_background_y1, text_background_x2, text_background_y2], detection) > 0.3:
200
+ is_overlap = True
201
+ break
202
+ # check if the text is out of the image
203
+ if text_background_x1 < 0 or text_background_x2 > image_size[0] or text_background_y1 < 0 or text_background_y2 > image_size[1]:
204
+ is_overlap = True
205
+ return is_overlap
206
+
207
+ # if pos == 'top left':
208
+ text_x = x1 + text_padding
209
+ text_y = y1 - text_padding
210
+
211
+ text_background_x1 = x1
212
+ text_background_y1 = y1 - 2 * text_padding - text_height
213
+
214
+ text_background_x2 = x1 + 2 * text_padding + text_width
215
+ text_background_y2 = y1
216
+ is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
217
+ if not is_overlap:
218
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
219
+
220
+ # elif pos == 'outer left':
221
+ text_x = x1 - text_padding - text_width
222
+ text_y = y1 + text_padding + text_height
223
+
224
+ text_background_x1 = x1 - 2 * text_padding - text_width
225
+ text_background_y1 = y1
226
+
227
+ text_background_x2 = x1
228
+ text_background_y2 = y1 + 2 * text_padding + text_height
229
+ is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
230
+ if not is_overlap:
231
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
232
+
233
+
234
+ # elif pos == 'outer right':
235
+ text_x = x2 + text_padding
236
+ text_y = y1 + text_padding + text_height
237
+
238
+ text_background_x1 = x2
239
+ text_background_y1 = y1
240
+
241
+ text_background_x2 = x2 + 2 * text_padding + text_width
242
+ text_background_y2 = y1 + 2 * text_padding + text_height
243
+
244
+ is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
245
+ if not is_overlap:
246
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
247
+
248
+ # elif pos == 'top right':
249
+ text_x = x2 - text_padding - text_width
250
+ text_y = y1 - text_padding
251
+
252
+ text_background_x1 = x2 - 2 * text_padding - text_width
253
+ text_background_y1 = y1 - 2 * text_padding - text_height
254
+
255
+ text_background_x2 = x2
256
+ text_background_y2 = y1
257
+
258
+ is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
259
+ if not is_overlap:
260
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
261
+
262
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
utils.py ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from ultralytics import YOLO
2
+ import os
3
+ import io
4
+ import base64
5
+ import time
6
+ from PIL import Image, ImageDraw, ImageFont
7
+ import json
8
+ import requests
9
+ # utility function
10
+ import os
11
+ from openai import AzureOpenAI
12
+
13
+ import json
14
+ import sys
15
+ import os
16
+ import cv2
17
+ import numpy as np
18
+ # %matplotlib inline
19
+ from matplotlib import pyplot as plt
20
+ import easyocr
21
+ reader = easyocr.Reader(['en'])
22
+ import time
23
+ import base64
24
+
25
+ import os
26
+ import ast
27
+ import torch
28
+ from typing import Tuple, List
29
+ from torchvision.ops import box_convert
30
+ import re
31
+ from torchvision.transforms import ToPILImage
32
+ import supervision as sv
33
+ import torchvision.transforms as T
34
+
35
+
36
+ def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
37
+ if not device:
38
+ device = "cuda" if torch.cuda.is_available() else "cpu"
39
+ if model_name == "blip2":
40
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
41
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
42
+ if device == 'cpu':
43
+ model = Blip2ForConditionalGeneration.from_pretrained(
44
+ model_name_or_path, device_map=None, torch_dtype=torch.float32
45
+ )
46
+ else:
47
+ model = Blip2ForConditionalGeneration.from_pretrained(
48
+ model_name_or_path, device_map=None, torch_dtype=torch.float16
49
+ ).to(device)
50
+ elif model_name == "florence2":
51
+ from transformers import AutoProcessor, AutoModelForCausalLM
52
+ processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
53
+ if device == 'cpu':
54
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
55
+ else:
56
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
57
+ return {'model': model.to(device), 'processor': processor}
58
+
59
+
60
+ def get_yolo_model(model_path):
61
+ from ultralytics import YOLO
62
+ # Load the model.
63
+ model = YOLO(model_path)
64
+ return model
65
+
66
+
67
+ def get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=None):
68
+ to_pil = ToPILImage()
69
+ if ocr_bbox:
70
+ non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
71
+ else:
72
+ non_ocr_boxes = filtered_boxes
73
+ croped_pil_image = []
74
+ for i, coord in enumerate(non_ocr_boxes):
75
+ xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
76
+ ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
77
+ cropped_image = image_source[ymin:ymax, xmin:xmax, :]
78
+ croped_pil_image.append(to_pil(cropped_image))
79
+
80
+ model, processor = caption_model_processor['model'], caption_model_processor['processor']
81
+ if not prompt:
82
+ if 'florence' in model.config.name_or_path:
83
+ prompt = "<CAPTION>"
84
+ else:
85
+ prompt = "The image shows"
86
+
87
+ batch_size = 10 # Number of samples per batch
88
+ generated_texts = []
89
+ device = model.device
90
+
91
+ for i in range(0, len(croped_pil_image), batch_size):
92
+ batch = croped_pil_image[i:i+batch_size]
93
+ if model.device.type == 'cuda':
94
+ inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device, dtype=torch.float16)
95
+ else:
96
+ inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
97
+ if 'florence' in model.config.name_or_path:
98
+ generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=1024,num_beams=3, do_sample=False)
99
+ else:
100
+ generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
101
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
102
+ generated_text = [gen.strip() for gen in generated_text]
103
+ generated_texts.extend(generated_text)
104
+
105
+ return generated_texts
106
+
107
+
108
+
109
+ def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
110
+ to_pil = ToPILImage()
111
+ if ocr_bbox:
112
+ non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
113
+ else:
114
+ non_ocr_boxes = filtered_boxes
115
+ croped_pil_image = []
116
+ for i, coord in enumerate(non_ocr_boxes):
117
+ xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
118
+ ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
119
+ cropped_image = image_source[ymin:ymax, xmin:xmax, :]
120
+ croped_pil_image.append(to_pil(cropped_image))
121
+
122
+ model, processor = caption_model_processor['model'], caption_model_processor['processor']
123
+ device = model.device
124
+ messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
125
+ prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
126
+
127
+ batch_size = 5 # Number of samples per batch
128
+ generated_texts = []
129
+
130
+ for i in range(0, len(croped_pil_image), batch_size):
131
+ images = croped_pil_image[i:i+batch_size]
132
+ image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
133
+ inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
134
+ texts = [prompt] * len(images)
135
+ for i, txt in enumerate(texts):
136
+ input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
137
+ inputs['input_ids'].append(input['input_ids'])
138
+ inputs['attention_mask'].append(input['attention_mask'])
139
+ inputs['pixel_values'].append(input['pixel_values'])
140
+ inputs['image_sizes'].append(input['image_sizes'])
141
+ max_len = max([x.shape[1] for x in inputs['input_ids']])
142
+ for i, v in enumerate(inputs['input_ids']):
143
+ inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
144
+ inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
145
+ inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
146
+
147
+ generation_args = {
148
+ "max_new_tokens": 25,
149
+ "temperature": 0.01,
150
+ "do_sample": False,
151
+ }
152
+ generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
153
+ # # remove input tokens
154
+ generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
155
+ response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
156
+ response = [res.strip('\n').strip() for res in response]
157
+ generated_texts.extend(response)
158
+
159
+ return generated_texts
160
+
161
+ def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
162
+ assert ocr_bbox is None or isinstance(ocr_bbox, List)
163
+
164
+ def box_area(box):
165
+ return (box[2] - box[0]) * (box[3] - box[1])
166
+
167
+ def intersection_area(box1, box2):
168
+ x1 = max(box1[0], box2[0])
169
+ y1 = max(box1[1], box2[1])
170
+ x2 = min(box1[2], box2[2])
171
+ y2 = min(box1[3], box2[3])
172
+ return max(0, x2 - x1) * max(0, y2 - y1)
173
+
174
+ def IoU(box1, box2):
175
+ intersection = intersection_area(box1, box2)
176
+ union = box_area(box1) + box_area(box2) - intersection + 1e-6
177
+ if box_area(box1) > 0 and box_area(box2) > 0:
178
+ ratio1 = intersection / box_area(box1)
179
+ ratio2 = intersection / box_area(box2)
180
+ else:
181
+ ratio1, ratio2 = 0, 0
182
+ return max(intersection / union, ratio1, ratio2)
183
+
184
+ boxes = boxes.tolist()
185
+ filtered_boxes = []
186
+ if ocr_bbox:
187
+ filtered_boxes.extend(ocr_bbox)
188
+ # print('ocr_bbox!!!', ocr_bbox)
189
+ for i, box1 in enumerate(boxes):
190
+ # if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
191
+ is_valid_box = True
192
+ for j, box2 in enumerate(boxes):
193
+ if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
194
+ is_valid_box = False
195
+ break
196
+ if is_valid_box:
197
+ # add the following 2 lines to include ocr bbox
198
+ if ocr_bbox:
199
+ if not any(IoU(box1, box3) > iou_threshold for k, box3 in enumerate(ocr_bbox)):
200
+ filtered_boxes.append(box1)
201
+ else:
202
+ filtered_boxes.append(box1)
203
+ return torch.tensor(filtered_boxes)
204
+
205
+ def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
206
+ transform = T.Compose(
207
+ [
208
+ T.RandomResize([800], max_size=1333),
209
+ T.ToTensor(),
210
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
211
+ ]
212
+ )
213
+ image_source = Image.open(image_path).convert("RGB")
214
+ image = np.asarray(image_source)
215
+ image_transformed, _ = transform(image_source, None)
216
+ return image, image_transformed
217
+
218
+
219
+ def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
220
+ text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
221
+ """
222
+ This function annotates an image with bounding boxes and labels.
223
+
224
+ Parameters:
225
+ image_source (np.ndarray): The source image to be annotated.
226
+ boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
227
+ logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
228
+ phrases (List[str]): A list of labels for each bounding box.
229
+ text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
230
+
231
+ Returns:
232
+ np.ndarray: The annotated image.
233
+ """
234
+ h, w, _ = image_source.shape
235
+ boxes = boxes * torch.Tensor([w, h, w, h])
236
+ xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
237
+ xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
238
+ detections = sv.Detections(xyxy=xyxy)
239
+
240
+ labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
241
+
242
+ from util.box_annotator import BoxAnnotator
243
+ box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
244
+ annotated_frame = image_source.copy()
245
+ annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
246
+
247
+ label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
248
+ return annotated_frame, label_coordinates
249
+
250
+
251
+ def predict(model, image, caption, box_threshold, text_threshold):
252
+ """ Use huggingface model to replace the original model
253
+ """
254
+ model, processor = model['model'], model['processor']
255
+ device = model.device
256
+
257
+ inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
258
+ with torch.no_grad():
259
+ outputs = model(**inputs)
260
+
261
+ results = processor.post_process_grounded_object_detection(
262
+ outputs,
263
+ inputs.input_ids,
264
+ box_threshold=box_threshold, # 0.4,
265
+ text_threshold=text_threshold, # 0.3,
266
+ target_sizes=[image.size[::-1]]
267
+ )[0]
268
+ boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
269
+ return boxes, logits, phrases
270
+
271
+
272
+ def predict_yolo(model, image_path, box_threshold):
273
+ """ Use huggingface model to replace the original model
274
+ """
275
+ # model = model['model']
276
+
277
+ result = model.predict(
278
+ source=image_path,
279
+ conf=box_threshold,
280
+ # iou=0.5, # default 0.7
281
+ )
282
+ boxes = result[0].boxes.xyxy#.tolist() # in pixel space
283
+ conf = result[0].boxes.conf
284
+ phrases = [str(i) for i in range(len(boxes))]
285
+
286
+ return boxes, conf, phrases
287
+
288
+
289
+ def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None):
290
+ """ ocr_bbox: list of xyxy format bbox
291
+ """
292
+ TEXT_PROMPT = "clickable buttons on the screen"
293
+ # BOX_TRESHOLD = 0.02 # 0.05/0.02 for web and 0.1 for mobile
294
+ TEXT_TRESHOLD = 0.01 # 0.9 # 0.01
295
+ image_source = Image.open(img_path).convert("RGB")
296
+ w, h = image_source.size
297
+ # import pdb; pdb.set_trace()
298
+ if False: # TODO
299
+ xyxy, logits, phrases = predict(model=model, image=image_source, caption=TEXT_PROMPT, box_threshold=BOX_TRESHOLD, text_threshold=TEXT_TRESHOLD)
300
+ else:
301
+ xyxy, logits, phrases = predict_yolo(model=model, image_path=img_path, box_threshold=BOX_TRESHOLD)
302
+ xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
303
+ image_source = np.asarray(image_source)
304
+ phrases = [str(i) for i in range(len(phrases))]
305
+
306
+ # annotate the image with labels
307
+ h, w, _ = image_source.shape
308
+ if ocr_bbox:
309
+ ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
310
+ ocr_bbox=ocr_bbox.tolist()
311
+ else:
312
+ print('no ocr bbox!!!')
313
+ ocr_bbox = None
314
+ filtered_boxes = remove_overlap(boxes=xyxy, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox)
315
+
316
+ # get parsed icon local semantics
317
+ if use_local_semantics:
318
+ caption_model = caption_model_processor['model']
319
+ if 'phi3_v' in caption_model.config.model_type:
320
+ parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
321
+ else:
322
+ parsed_content_icon = get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=prompt)
323
+ ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
324
+ icon_start = len(ocr_text)
325
+ parsed_content_icon_ls = []
326
+ for i, txt in enumerate(parsed_content_icon):
327
+ parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
328
+ parsed_content_merged = ocr_text + parsed_content_icon_ls
329
+ else:
330
+ ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
331
+ parsed_content_merged = ocr_text
332
+
333
+ filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
334
+
335
+ phrases = [i for i in range(len(filtered_boxes))]
336
+
337
+ # draw boxes
338
+ if draw_bbox_config:
339
+ annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
340
+ else:
341
+ annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
342
+
343
+ pil_img = Image.fromarray(annotated_frame)
344
+ buffered = io.BytesIO()
345
+ pil_img.save(buffered, format="PNG")
346
+ encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
347
+ if output_coord_in_ratio:
348
+ # h, w, _ = image_source.shape
349
+ label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
350
+ assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
351
+
352
+ return encoded_image, label_coordinates, parsed_content_merged
353
+
354
+
355
+ def get_xywh(input):
356
+ x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
357
+ x, y, w, h = int(x), int(y), int(w), int(h)
358
+ return x, y, w, h
359
+
360
+ def get_xyxy(input):
361
+ x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
362
+ x, y, xp, yp = int(x), int(y), int(xp), int(yp)
363
+ return x, y, xp, yp
364
+
365
+ def get_xywh_yolo(input):
366
+ x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
367
+ x, y, w, h = int(x), int(y), int(w), int(h)
368
+ return x, y, w, h
369
+
370
+
371
+
372
+ def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None):
373
+ if easyocr_args is None:
374
+ easyocr_args = {}
375
+ result = reader.readtext(image_path, **easyocr_args)
376
+ is_goal_filtered = False
377
+ # print('goal filtering pred:', result[-5:])
378
+ coord = [item[0] for item in result]
379
+ text = [item[1] for item in result]
380
+ # read the image using cv2
381
+ if display_img:
382
+ opencv_img = cv2.imread(image_path)
383
+ opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR)
384
+ bb = []
385
+ for item in coord:
386
+ x, y, a, b = get_xywh(item)
387
+ # print(x, y, a, b)
388
+ bb.append((x, y, a, b))
389
+ cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
390
+
391
+ # Display the image
392
+ plt.imshow(opencv_img)
393
+ else:
394
+ if output_bb_format == 'xywh':
395
+ bb = [get_xywh(item) for item in coord]
396
+ elif output_bb_format == 'xyxy':
397
+ bb = [get_xyxy(item) for item in coord]
398
+ # print('bounding box!!!', bb)
399
+ return (text, bb), is_goal_filtered
400
+
401
+
402
+
weights/README.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ pipeline_tag: image-text-to-text
5
+ ---
6
+ 📢 [[Project Page](https://microsoft.github.io/OmniParser/)] [[Blog Post](https://www.microsoft.com/en-us/research/articles/omniparser-for-pure-vision-based-gui-agent/)]
7
+
8
+ # Model Summary
9
+ OmniParser is a general screen parsing tool, which interprets/converts UI screenshot to structured format, to improve existing LLM based UI agent.
10
+ Training Datasets include: 1) an interactable icon detection dataset, which was curated from popular web pages and automatically annotated to highlight clickable and actionable regions, and 2) an icon description dataset, designed to associate each UI element with its corresponding function.
11
+
12
+ This model hub includes a finetuned version of YOLOv8 and a finetuned BLIP-2 model on the above dataset respectively. For more details of the models used and finetuning, please refer to the [paper](https://arxiv.org/abs/2408.00203).
13
+
14
+ # Responsible AI Considerations
15
+ ## Intended Use
16
+ - OmniParser is designed to be able to convert unstructured screenshot image into structured list of elements including interactable regions location and captions of icons on its potential functionality.
17
+ - OmniParser is intended to be used in settings where users are already trained on responsible analytic approaches and critical reasoning is expected. OmniParser is capable of providing extracted information from the screenshot, however human judgement is needed for the output of OmniParser.
18
+ - OmniParser is intended to be used on various screenshots, which includes both PC and Phone, and also on various applications.
19
+ ## limitations
20
+ - OmniParser is designed to faithfully convert screenshot image into structured elements of interactable regions and semantics of the screen, while it does not detect harmful content in its input (like users have freedom to decide the input of any LLMs), users are expected to provide input to the OmniParser that is not harmful.
21
+ - While OmniParser only converts screenshot image into texts, it can be used to construct an GUI agent based on LLMs that is actionable. When developing and operating the agent using OmniParser, the developers need to be responsible and follow common safety standard.
22
+ - For OmniPaser-BLIP2, it may incorrectly infer the gender or other sensitive attribute (e.g., race, religion etc.) of individuals in icon images. Inference of sensitive attributes may rely upon stereotypes and generalizations rather than information about specific individuals and are more likely to be incorrect for marginalized people. Incorrect inferences may result in significant physical or psychological injury or restrict, infringe upon or undermine the ability to realize an individual’s human rights. We do not recommend use of OmniParser in any workplace-like use case scenario.
23
+
24
+
weights/config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Salesforce/blip2-opt-2.7b",
3
+ "architectures": [
4
+ "Blip2ForConditionalGeneration"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "initializer_range": 0.02,
8
+ "model_type": "blip-2",
9
+ "num_query_tokens": 32,
10
+ "qformer_config": {
11
+ "classifier_dropout": null,
12
+ "model_type": "blip_2_qformer"
13
+ },
14
+ "text_config": {
15
+ "_name_or_path": "facebook/opt-2.7b",
16
+ "activation_dropout": 0.0,
17
+ "architectures": [
18
+ "OPTForCausalLM"
19
+ ],
20
+ "eos_token_id": 50118,
21
+ "ffn_dim": 10240,
22
+ "hidden_size": 2560,
23
+ "model_type": "opt",
24
+ "num_attention_heads": 32,
25
+ "num_hidden_layers": 32,
26
+ "prefix": "</s>",
27
+ "torch_dtype": "float16",
28
+ "word_embed_proj_dim": 2560
29
+ },
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.40.2",
32
+ "use_decoder_only_language_model": true,
33
+ "vision_config": {
34
+ "dropout": 0.0,
35
+ "initializer_factor": 1.0,
36
+ "model_type": "blip_2_vision_model",
37
+ "num_channels": 3,
38
+ "projection_dim": 512
39
+ }
40
+ }
weights/convert_safetensor_to_pt.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from ultralytics.nn.tasks import DetectionModel
3
+ from safetensors.torch import load_file
4
+
5
+ tensor_dict = load_file("weights/icon_detect/model.safetensors")
6
+
7
+ model = DetectionModel('weights/icon_detect/model.yaml')
8
+ model.load_state_dict(tensor_dict)
9
+ torch.save({'model':model}, 'weights/icon_detect/best.pt')