Spaces:
Runtime error
Runtime error
"""Analogical reasoning strategy implementation.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Tuple, Callable | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy, StrategyResult | |
class AnalogicalLevel(Enum): | |
"""Levels of analogical similarity.""" | |
SURFACE = "surface" | |
STRUCTURAL = "structural" | |
SEMANTIC = "semantic" | |
FUNCTIONAL = "functional" | |
CAUSAL = "causal" | |
ABSTRACT = "abstract" | |
class MappingType(Enum): | |
"""Types of analogical mappings.""" | |
DIRECT = "direct" | |
TRANSFORMED = "transformed" | |
COMPOSITE = "composite" | |
ABSTRACT = "abstract" | |
METAPHORICAL = "metaphorical" | |
HYBRID = "hybrid" | |
class AnalogicalPattern: | |
"""Represents a pattern for analogical matching.""" | |
id: str | |
level: AnalogicalLevel | |
features: Dict[str, Any] | |
relations: List[Tuple[str, str, str]] # (entity1, relation, entity2) | |
constraints: List[str] | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
class AnalogicalMapping: | |
"""Represents a mapping between source and target domains.""" | |
id: str | |
type: MappingType | |
source_elements: Dict[str, Any] | |
target_elements: Dict[str, Any] | |
correspondences: List[Tuple[str, str, float]] # (source, target, strength) | |
transformations: List[Dict[str, Any]] | |
confidence: float | |
timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
class AnalogicalSolution: | |
"""Represents a solution derived through analogical reasoning.""" | |
id: str | |
source_analogy: str | |
mapping: AnalogicalMapping | |
adaptation: Dict[str, Any] | |
inference: Dict[str, Any] | |
confidence: float | |
validation: Dict[str, Any] | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
class AnalogicalStrategy(ReasoningStrategy): | |
"""Advanced analogical reasoning that: | |
1. Identifies relevant analogies | |
2. Maps relationships | |
3. Transfers knowledge | |
4. Validates mappings | |
5. Refines analogies | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize analogical reasoning.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.min_similarity = self.config.get('min_similarity', 0.6) | |
self.max_candidates = self.config.get('max_candidates', 5) | |
self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7) | |
# Knowledge base | |
self.patterns: Dict[str, AnalogicalPattern] = {} | |
self.mappings: Dict[str, AnalogicalMapping] = {} | |
self.solutions: Dict[str, AnalogicalSolution] = {} | |
# Performance metrics | |
self.performance_metrics = { | |
'pattern_matches': 0, | |
'successful_mappings': 0, | |
'failed_mappings': 0, | |
'adaptation_success_rate': 0.0, | |
'avg_solution_confidence': 0.0, | |
'pattern_distribution': defaultdict(int), | |
'mapping_distribution': defaultdict(int), | |
'total_patterns_used': 0, | |
'total_mappings_created': 0, | |
'total_solutions_generated': 0 | |
} | |
async def reason( | |
self, | |
query: str, | |
context: Dict[str, Any] | |
) -> StrategyResult: | |
""" | |
Apply analogical reasoning to analyze the query. | |
Args: | |
query: The query to reason about | |
context: Additional context and parameters | |
Returns: | |
StrategyResult containing the reasoning output and metadata | |
""" | |
try: | |
# Extract patterns | |
patterns = await self._extract_patterns(query, context) | |
self.performance_metrics['total_patterns_used'] = len(patterns) | |
# Find matches | |
matches = await self._find_matches(patterns, context) | |
self.performance_metrics['pattern_matches'] = len(matches) | |
# Create mappings | |
mappings = await self._create_mappings(matches, context) | |
self.performance_metrics['total_mappings_created'] = len(mappings) | |
# Generate solutions | |
solutions = await self._generate_solutions(mappings, context) | |
self.performance_metrics['total_solutions_generated'] = len(solutions) | |
# Select best solution | |
best_solution = await self._select_best_solution(solutions, context) | |
if best_solution: | |
# Update knowledge base | |
self._update_knowledge(patterns, mappings, best_solution) | |
# Update metrics | |
self._update_metrics(patterns, mappings, solutions, best_solution) | |
# Build reasoning trace | |
reasoning_trace = self._build_reasoning_trace( | |
patterns, matches, mappings, solutions, best_solution | |
) | |
return StrategyResult( | |
strategy_type="analogical", | |
success=True, | |
answer=best_solution.inference.get('conclusion'), | |
confidence=best_solution.confidence, | |
reasoning_trace=reasoning_trace, | |
metadata={ | |
'source_analogy': best_solution.source_analogy, | |
'mapping_type': best_solution.mapping.type.value, | |
'adaptation_details': best_solution.adaptation, | |
'validation_results': best_solution.validation | |
}, | |
performance_metrics=self.performance_metrics | |
) | |
return StrategyResult( | |
strategy_type="analogical", | |
success=False, | |
answer=None, | |
confidence=0.0, | |
reasoning_trace=[{ | |
'step': 'error', | |
'error': 'No valid solution found', | |
'timestamp': datetime.now().isoformat() | |
}], | |
metadata={'error': 'No valid solution found'}, | |
performance_metrics=self.performance_metrics | |
) | |
except Exception as e: | |
logging.error(f"Analogical reasoning error: {str(e)}") | |
return StrategyResult( | |
strategy_type="analogical", | |
success=False, | |
answer=None, | |
confidence=0.0, | |
reasoning_trace=[{ | |
'step': 'error', | |
'error': str(e), | |
'timestamp': datetime.now().isoformat() | |
}], | |
metadata={'error': str(e)}, | |
performance_metrics=self.performance_metrics | |
) | |
async def _extract_patterns( | |
self, | |
query: str, | |
context: Dict[str, Any] | |
) -> List[AnalogicalPattern]: | |
"""Extract patterns from query for analogical matching.""" | |
# This is a placeholder implementation | |
# In practice, this would use more sophisticated pattern extraction | |
pattern = AnalogicalPattern( | |
id=f"pattern_{len(self.patterns)}", | |
level=AnalogicalLevel.SURFACE, | |
features={'query': query}, | |
relations=[], | |
constraints=[], | |
metadata={'context': context} | |
) | |
return [pattern] | |
async def _find_matches( | |
self, | |
patterns: List[AnalogicalPattern], | |
context: Dict[str, Any] | |
) -> List[Dict[str, Any]]: | |
"""Find matching patterns in knowledge base.""" | |
matches = [] | |
for pattern in patterns: | |
# Example matching logic | |
similarity = np.random.random() # Placeholder | |
if similarity >= self.min_similarity: | |
matches.append({ | |
'pattern': pattern, | |
'similarity': similarity, | |
'features': pattern.features | |
}) | |
return sorted( | |
matches, | |
key=lambda x: x['similarity'], | |
reverse=True | |
)[:self.max_candidates] | |
async def _create_mappings( | |
self, | |
matches: List[Dict[str, Any]], | |
context: Dict[str, Any] | |
) -> List[AnalogicalMapping]: | |
"""Create mappings between source and target domains.""" | |
mappings = [] | |
for match in matches: | |
mapping = AnalogicalMapping( | |
id=f"mapping_{len(self.mappings)}", | |
type=MappingType.DIRECT, | |
source_elements=match['features'], | |
target_elements=context, | |
correspondences=[], | |
transformations=[], | |
confidence=match['similarity'] | |
) | |
mappings.append(mapping) | |
return mappings | |
async def _generate_solutions( | |
self, | |
mappings: List[AnalogicalMapping], | |
context: Dict[str, Any] | |
) -> List[AnalogicalSolution]: | |
"""Generate solutions through analogical transfer.""" | |
solutions = [] | |
for mapping in mappings: | |
if mapping.confidence >= self.adaptation_threshold: | |
solution = AnalogicalSolution( | |
id=f"solution_{len(self.solutions)}", | |
source_analogy=str(mapping.source_elements), | |
mapping=mapping, | |
adaptation={'applied_rules': []}, | |
inference={'conclusion': 'Analogical solution'}, | |
confidence=mapping.confidence, | |
validation={'checks_passed': True}, | |
metadata={'context': context} | |
) | |
solutions.append(solution) | |
return solutions | |
async def _select_best_solution( | |
self, | |
solutions: List[AnalogicalSolution], | |
context: Dict[str, Any] | |
) -> Optional[AnalogicalSolution]: | |
"""Select the best solution based on multiple criteria.""" | |
if not solutions: | |
return None | |
# Sort by confidence and return best | |
return max(solutions, key=lambda x: x.confidence) | |
def _update_knowledge( | |
self, | |
patterns: List[AnalogicalPattern], | |
mappings: List[AnalogicalMapping], | |
solution: AnalogicalSolution | |
) -> None: | |
"""Update knowledge base with new patterns and successful mappings.""" | |
# Store new patterns | |
for pattern in patterns: | |
self.patterns[pattern.id] = pattern | |
# Store successful mappings | |
for mapping in mappings: | |
if mapping.confidence >= self.min_confidence: | |
self.mappings[mapping.id] = mapping | |
# Store successful solution | |
self.solutions[solution.id] = solution | |
def _update_metrics( | |
self, | |
patterns: List[AnalogicalPattern], | |
mappings: List[AnalogicalMapping], | |
solutions: List[AnalogicalSolution], | |
best_solution: AnalogicalSolution | |
) -> None: | |
"""Update performance metrics.""" | |
# Update pattern distribution | |
for pattern in patterns: | |
self.performance_metrics['pattern_distribution'][pattern.level] += 1 | |
# Update mapping distribution | |
for mapping in mappings: | |
self.performance_metrics['mapping_distribution'][mapping.type] += 1 | |
if mapping.confidence >= self.min_confidence: | |
self.performance_metrics['successful_mappings'] += 1 | |
else: | |
self.performance_metrics['failed_mappings'] += 1 | |
# Calculate adaptation success rate | |
total_adaptations = len(solutions) | |
successful_adaptations = sum( | |
1 for s in solutions | |
if s.confidence >= self.adaptation_threshold | |
) | |
self.performance_metrics['adaptation_success_rate'] = ( | |
successful_adaptations / total_adaptations | |
if total_adaptations > 0 else 0.0 | |
) | |
# Calculate average solution confidence | |
self.performance_metrics['avg_solution_confidence'] = ( | |
sum(s.confidence for s in solutions) / len(solutions) | |
if solutions else 0.0 | |
) | |
def _build_reasoning_trace( | |
self, | |
patterns: List[AnalogicalPattern], | |
matches: List[Dict[str, Any]], | |
mappings: List[AnalogicalMapping], | |
solutions: List[AnalogicalSolution], | |
best_solution: AnalogicalSolution | |
) -> List[Dict[str, Any]]: | |
"""Build the reasoning trace for the solution.""" | |
trace = [] | |
# Pattern extraction step | |
trace.append({ | |
'step': 'pattern_extraction', | |
'patterns': [self._pattern_to_dict(p) for p in patterns], | |
'timestamp': datetime.now().isoformat() | |
}) | |
# Pattern matching step | |
trace.append({ | |
'step': 'pattern_matching', | |
'matches': matches, | |
'timestamp': datetime.now().isoformat() | |
}) | |
# Mapping creation step | |
trace.append({ | |
'step': 'mapping_creation', | |
'mappings': [self._mapping_to_dict(m) for m in mappings], | |
'timestamp': datetime.now().isoformat() | |
}) | |
# Solution generation step | |
trace.append({ | |
'step': 'solution_generation', | |
'solutions': [self._solution_to_dict(s) for s in solutions], | |
'timestamp': datetime.now().isoformat() | |
}) | |
# Best solution selection step | |
trace.append({ | |
'step': 'solution_selection', | |
'selected_solution': self._solution_to_dict(best_solution), | |
'timestamp': datetime.now().isoformat() | |
}) | |
return trace | |
def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]: | |
"""Convert pattern to dictionary for serialization.""" | |
return { | |
'id': pattern.id, | |
'level': pattern.level.value, | |
'features': pattern.features, | |
'relations': pattern.relations, | |
'constraints': pattern.constraints, | |
'metadata': pattern.metadata, | |
'timestamp': pattern.timestamp | |
} | |
def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]: | |
"""Convert mapping to dictionary for serialization.""" | |
return { | |
'id': mapping.id, | |
'type': mapping.type.value, | |
'source_elements': mapping.source_elements, | |
'target_elements': mapping.target_elements, | |
'correspondences': mapping.correspondences, | |
'transformations': mapping.transformations, | |
'confidence': mapping.confidence, | |
'timestamp': mapping.timestamp | |
} | |
def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]: | |
"""Convert solution to dictionary for serialization.""" | |
return { | |
'id': solution.id, | |
'source_analogy': solution.source_analogy, | |
'mapping': self._mapping_to_dict(solution.mapping), | |
'adaptation': solution.adaptation, | |
'inference': solution.inference, | |
'confidence': solution.confidence, | |
'validation': solution.validation, | |
'metadata': solution.metadata, | |
'timestamp': solution.timestamp | |
} | |
def clear_knowledge_base(self) -> None: | |
"""Clear the knowledge base.""" | |
self.patterns.clear() | |
self.mappings.clear() | |
self.solutions.clear() | |
# Reset performance metrics | |
self.performance_metrics.update({ | |
'pattern_matches': 0, | |
'successful_mappings': 0, | |
'failed_mappings': 0, | |
'adaptation_success_rate': 0.0, | |
'avg_solution_confidence': 0.0, | |
'pattern_distribution': defaultdict(int), | |
'mapping_distribution': defaultdict(int), | |
'total_patterns_used': 0, | |
'total_mappings_created': 0, | |
'total_solutions_generated': 0 | |
}) | |