File size: 16,640 Bytes
05c0fea
1d75522
 
 
 
 
 
 
 
 
 
d16c12e
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16c12e
1d75522
 
 
 
 
 
 
 
 
 
 
d16c12e
1d75522
 
 
 
 
 
 
 
 
 
 
 
d16c12e
1d75522
05c0fea
 
 
 
 
 
 
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16c12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
d16c12e
 
 
 
 
 
 
1d75522
d16c12e
1d75522
d16c12e
1d75522
d16c12e
1d75522
d16c12e
1d75522
d16c12e
1d75522
d16c12e
1d75522
d16c12e
1d75522
d16c12e
1d75522
 
 
 
d16c12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
d16c12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
d16c12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
d16c12e
1d75522
d16c12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
d16c12e
1d75522
d16c12e
 
 
 
 
 
 
 
 
 
 
1d75522
d16c12e
 
 
 
 
 
 
1d75522
d16c12e
1d75522
d16c12e
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
d16c12e
 
 
 
 
 
 
1d75522
d16c12e
 
 
 
 
 
 
 
 
 
 
 
1d75522
d16c12e
1d75522
d16c12e
 
 
 
 
 
1d75522
d16c12e
1d75522
d16c12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
d16c12e
 
 
 
 
1d75522
 
d16c12e
 
 
 
 
 
1d75522
d16c12e
 
 
 
 
 
1d75522
d16c12e
 
 
 
 
 
1d75522
d16c12e
 
1d75522
 
 
d16c12e
 
 
 
 
 
 
1d75522
d16c12e
1d75522
 
 
d16c12e
 
 
 
 
 
 
 
1d75522
d16c12e
1d75522
 
 
d16c12e
 
 
 
 
 
 
 
 
1d75522
d16c12e
 
1d75522
 
 
 
d16c12e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
"""Analogical reasoning strategy implementation."""

import logging
from typing import Dict, Any, List, Optional, Set, Tuple, Callable
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy, StrategyResult

class AnalogicalLevel(Enum):
    """Levels of analogical similarity."""
    SURFACE = "surface"
    STRUCTURAL = "structural"
    SEMANTIC = "semantic"
    FUNCTIONAL = "functional"
    CAUSAL = "causal"
    ABSTRACT = "abstract"

class MappingType(Enum):
    """Types of analogical mappings."""
    DIRECT = "direct"
    TRANSFORMED = "transformed"
    COMPOSITE = "composite"
    ABSTRACT = "abstract"
    METAPHORICAL = "metaphorical"
    HYBRID = "hybrid"

@dataclass
class AnalogicalPattern:
    """Represents a pattern for analogical matching."""
    id: str
    level: AnalogicalLevel
    features: Dict[str, Any]
    relations: List[Tuple[str, str, str]]  # (entity1, relation, entity2)
    constraints: List[str]
    metadata: Dict[str, Any] = field(default_factory=dict)
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

@dataclass
class AnalogicalMapping:
    """Represents a mapping between source and target domains."""
    id: str
    type: MappingType
    source_elements: Dict[str, Any]
    target_elements: Dict[str, Any]
    correspondences: List[Tuple[str, str, float]]  # (source, target, strength)
    transformations: List[Dict[str, Any]]
    confidence: float
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

@dataclass
class AnalogicalSolution:
    """Represents a solution derived through analogical reasoning."""
    id: str
    source_analogy: str
    mapping: AnalogicalMapping
    adaptation: Dict[str, Any]
    inference: Dict[str, Any]
    confidence: float
    validation: Dict[str, Any]
    metadata: Dict[str, Any] = field(default_factory=dict)
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

class AnalogicalStrategy(ReasoningStrategy):
    """Advanced analogical reasoning that:
    1. Identifies relevant analogies
    2. Maps relationships
    3. Transfers knowledge
    4. Validates mappings
    5. Refines analogies
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize analogical reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.min_similarity = self.config.get('min_similarity', 0.6)
        self.max_candidates = self.config.get('max_candidates', 5)
        self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
        
        # Knowledge base
        self.patterns: Dict[str, AnalogicalPattern] = {}
        self.mappings: Dict[str, AnalogicalMapping] = {}
        self.solutions: Dict[str, AnalogicalSolution] = {}
        
        # Performance metrics
        self.performance_metrics = {
            'pattern_matches': 0,
            'successful_mappings': 0,
            'failed_mappings': 0,
            'adaptation_success_rate': 0.0,
            'avg_solution_confidence': 0.0,
            'pattern_distribution': defaultdict(int),
            'mapping_distribution': defaultdict(int),
            'total_patterns_used': 0,
            'total_mappings_created': 0,
            'total_solutions_generated': 0
        }
    
    async def reason(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> StrategyResult:
        """
        Apply analogical reasoning to analyze the query.
        
        Args:
            query: The query to reason about
            context: Additional context and parameters
            
        Returns:
            StrategyResult containing the reasoning output and metadata
        """
        try:
            # Extract patterns
            patterns = await self._extract_patterns(query, context)
            self.performance_metrics['total_patterns_used'] = len(patterns)
            
            # Find matches
            matches = await self._find_matches(patterns, context)
            self.performance_metrics['pattern_matches'] = len(matches)
            
            # Create mappings
            mappings = await self._create_mappings(matches, context)
            self.performance_metrics['total_mappings_created'] = len(mappings)
            
            # Generate solutions
            solutions = await self._generate_solutions(mappings, context)
            self.performance_metrics['total_solutions_generated'] = len(solutions)
            
            # Select best solution
            best_solution = await self._select_best_solution(solutions, context)
            
            if best_solution:
                # Update knowledge base
                self._update_knowledge(patterns, mappings, best_solution)
                
                # Update metrics
                self._update_metrics(patterns, mappings, solutions, best_solution)
                
                # Build reasoning trace
                reasoning_trace = self._build_reasoning_trace(
                    patterns, matches, mappings, solutions, best_solution
                )
                
                return StrategyResult(
                    strategy_type="analogical",
                    success=True,
                    answer=best_solution.inference.get('conclusion'),
                    confidence=best_solution.confidence,
                    reasoning_trace=reasoning_trace,
                    metadata={
                        'source_analogy': best_solution.source_analogy,
                        'mapping_type': best_solution.mapping.type.value,
                        'adaptation_details': best_solution.adaptation,
                        'validation_results': best_solution.validation
                    },
                    performance_metrics=self.performance_metrics
                )
            
            return StrategyResult(
                strategy_type="analogical",
                success=False,
                answer=None,
                confidence=0.0,
                reasoning_trace=[{
                    'step': 'error',
                    'error': 'No valid solution found',
                    'timestamp': datetime.now().isoformat()
                }],
                metadata={'error': 'No valid solution found'},
                performance_metrics=self.performance_metrics
            )
            
        except Exception as e:
            logging.error(f"Analogical reasoning error: {str(e)}")
            return StrategyResult(
                strategy_type="analogical",
                success=False,
                answer=None,
                confidence=0.0,
                reasoning_trace=[{
                    'step': 'error',
                    'error': str(e),
                    'timestamp': datetime.now().isoformat()
                }],
                metadata={'error': str(e)},
                performance_metrics=self.performance_metrics
            )
    
    async def _extract_patterns(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> List[AnalogicalPattern]:
        """Extract patterns from query for analogical matching."""
        # This is a placeholder implementation
        # In practice, this would use more sophisticated pattern extraction
        pattern = AnalogicalPattern(
            id=f"pattern_{len(self.patterns)}",
            level=AnalogicalLevel.SURFACE,
            features={'query': query},
            relations=[],
            constraints=[],
            metadata={'context': context}
        )
        return [pattern]
    
    async def _find_matches(
        self,
        patterns: List[AnalogicalPattern],
        context: Dict[str, Any]
    ) -> List[Dict[str, Any]]:
        """Find matching patterns in knowledge base."""
        matches = []
        
        for pattern in patterns:
            # Example matching logic
            similarity = np.random.random()  # Placeholder
            if similarity >= self.min_similarity:
                matches.append({
                    'pattern': pattern,
                    'similarity': similarity,
                    'features': pattern.features
                })
        
        return sorted(
            matches,
            key=lambda x: x['similarity'],
            reverse=True
        )[:self.max_candidates]
    
    async def _create_mappings(
        self,
        matches: List[Dict[str, Any]],
        context: Dict[str, Any]
    ) -> List[AnalogicalMapping]:
        """Create mappings between source and target domains."""
        mappings = []
        
        for match in matches:
            mapping = AnalogicalMapping(
                id=f"mapping_{len(self.mappings)}",
                type=MappingType.DIRECT,
                source_elements=match['features'],
                target_elements=context,
                correspondences=[],
                transformations=[],
                confidence=match['similarity']
            )
            mappings.append(mapping)
        
        return mappings
    
    async def _generate_solutions(
        self,
        mappings: List[AnalogicalMapping],
        context: Dict[str, Any]
    ) -> List[AnalogicalSolution]:
        """Generate solutions through analogical transfer."""
        solutions = []
        
        for mapping in mappings:
            if mapping.confidence >= self.adaptation_threshold:
                solution = AnalogicalSolution(
                    id=f"solution_{len(self.solutions)}",
                    source_analogy=str(mapping.source_elements),
                    mapping=mapping,
                    adaptation={'applied_rules': []},
                    inference={'conclusion': 'Analogical solution'},
                    confidence=mapping.confidence,
                    validation={'checks_passed': True},
                    metadata={'context': context}
                )
                solutions.append(solution)
        
        return solutions
    
    async def _select_best_solution(
        self,
        solutions: List[AnalogicalSolution],
        context: Dict[str, Any]
    ) -> Optional[AnalogicalSolution]:
        """Select the best solution based on multiple criteria."""
        if not solutions:
            return None
            
        # Sort by confidence and return best
        return max(solutions, key=lambda x: x.confidence)
    
    def _update_knowledge(
        self,
        patterns: List[AnalogicalPattern],
        mappings: List[AnalogicalMapping],
        solution: AnalogicalSolution
    ) -> None:
        """Update knowledge base with new patterns and successful mappings."""
        # Store new patterns
        for pattern in patterns:
            self.patterns[pattern.id] = pattern
            
        # Store successful mappings
        for mapping in mappings:
            if mapping.confidence >= self.min_confidence:
                self.mappings[mapping.id] = mapping
        
        # Store successful solution
        self.solutions[solution.id] = solution
    
    def _update_metrics(
        self,
        patterns: List[AnalogicalPattern],
        mappings: List[AnalogicalMapping],
        solutions: List[AnalogicalSolution],
        best_solution: AnalogicalSolution
    ) -> None:
        """Update performance metrics."""
        # Update pattern distribution
        for pattern in patterns:
            self.performance_metrics['pattern_distribution'][pattern.level] += 1
        
        # Update mapping distribution
        for mapping in mappings:
            self.performance_metrics['mapping_distribution'][mapping.type] += 1
            if mapping.confidence >= self.min_confidence:
                self.performance_metrics['successful_mappings'] += 1
            else:
                self.performance_metrics['failed_mappings'] += 1
        
        # Calculate adaptation success rate
        total_adaptations = len(solutions)
        successful_adaptations = sum(
            1 for s in solutions
            if s.confidence >= self.adaptation_threshold
        )
        self.performance_metrics['adaptation_success_rate'] = (
            successful_adaptations / total_adaptations
            if total_adaptations > 0 else 0.0
        )
        
        # Calculate average solution confidence
        self.performance_metrics['avg_solution_confidence'] = (
            sum(s.confidence for s in solutions) / len(solutions)
            if solutions else 0.0
        )
    
    def _build_reasoning_trace(
        self,
        patterns: List[AnalogicalPattern],
        matches: List[Dict[str, Any]],
        mappings: List[AnalogicalMapping],
        solutions: List[AnalogicalSolution],
        best_solution: AnalogicalSolution
    ) -> List[Dict[str, Any]]:
        """Build the reasoning trace for the solution."""
        trace = []
        
        # Pattern extraction step
        trace.append({
            'step': 'pattern_extraction',
            'patterns': [self._pattern_to_dict(p) for p in patterns],
            'timestamp': datetime.now().isoformat()
        })
        
        # Pattern matching step
        trace.append({
            'step': 'pattern_matching',
            'matches': matches,
            'timestamp': datetime.now().isoformat()
        })
        
        # Mapping creation step
        trace.append({
            'step': 'mapping_creation',
            'mappings': [self._mapping_to_dict(m) for m in mappings],
            'timestamp': datetime.now().isoformat()
        })
        
        # Solution generation step
        trace.append({
            'step': 'solution_generation',
            'solutions': [self._solution_to_dict(s) for s in solutions],
            'timestamp': datetime.now().isoformat()
        })
        
        # Best solution selection step
        trace.append({
            'step': 'solution_selection',
            'selected_solution': self._solution_to_dict(best_solution),
            'timestamp': datetime.now().isoformat()
        })
        
        return trace
    
    def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]:
        """Convert pattern to dictionary for serialization."""
        return {
            'id': pattern.id,
            'level': pattern.level.value,
            'features': pattern.features,
            'relations': pattern.relations,
            'constraints': pattern.constraints,
            'metadata': pattern.metadata,
            'timestamp': pattern.timestamp
        }
    
    def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]:
        """Convert mapping to dictionary for serialization."""
        return {
            'id': mapping.id,
            'type': mapping.type.value,
            'source_elements': mapping.source_elements,
            'target_elements': mapping.target_elements,
            'correspondences': mapping.correspondences,
            'transformations': mapping.transformations,
            'confidence': mapping.confidence,
            'timestamp': mapping.timestamp
        }
    
    def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]:
        """Convert solution to dictionary for serialization."""
        return {
            'id': solution.id,
            'source_analogy': solution.source_analogy,
            'mapping': self._mapping_to_dict(solution.mapping),
            'adaptation': solution.adaptation,
            'inference': solution.inference,
            'confidence': solution.confidence,
            'validation': solution.validation,
            'metadata': solution.metadata,
            'timestamp': solution.timestamp
        }
    
    def clear_knowledge_base(self) -> None:
        """Clear the knowledge base."""
        self.patterns.clear()
        self.mappings.clear()
        self.solutions.clear()
        
        # Reset performance metrics
        self.performance_metrics.update({
            'pattern_matches': 0,
            'successful_mappings': 0,
            'failed_mappings': 0,
            'adaptation_success_rate': 0.0,
            'avg_solution_confidence': 0.0,
            'pattern_distribution': defaultdict(int),
            'mapping_distribution': defaultdict(int),
            'total_patterns_used': 0,
            'total_mappings_created': 0,
            'total_solutions_generated': 0
        })