Spaces:
Runtime error
Runtime error
File size: 16,640 Bytes
05c0fea 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 05c0fea 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e 1d75522 d16c12e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
"""Analogical reasoning strategy implementation."""
import logging
from typing import Dict, Any, List, Optional, Set, Tuple, Callable
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy, StrategyResult
class AnalogicalLevel(Enum):
"""Levels of analogical similarity."""
SURFACE = "surface"
STRUCTURAL = "structural"
SEMANTIC = "semantic"
FUNCTIONAL = "functional"
CAUSAL = "causal"
ABSTRACT = "abstract"
class MappingType(Enum):
"""Types of analogical mappings."""
DIRECT = "direct"
TRANSFORMED = "transformed"
COMPOSITE = "composite"
ABSTRACT = "abstract"
METAPHORICAL = "metaphorical"
HYBRID = "hybrid"
@dataclass
class AnalogicalPattern:
"""Represents a pattern for analogical matching."""
id: str
level: AnalogicalLevel
features: Dict[str, Any]
relations: List[Tuple[str, str, str]] # (entity1, relation, entity2)
constraints: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
@dataclass
class AnalogicalMapping:
"""Represents a mapping between source and target domains."""
id: str
type: MappingType
source_elements: Dict[str, Any]
target_elements: Dict[str, Any]
correspondences: List[Tuple[str, str, float]] # (source, target, strength)
transformations: List[Dict[str, Any]]
confidence: float
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
@dataclass
class AnalogicalSolution:
"""Represents a solution derived through analogical reasoning."""
id: str
source_analogy: str
mapping: AnalogicalMapping
adaptation: Dict[str, Any]
inference: Dict[str, Any]
confidence: float
validation: Dict[str, Any]
metadata: Dict[str, Any] = field(default_factory=dict)
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
class AnalogicalStrategy(ReasoningStrategy):
"""Advanced analogical reasoning that:
1. Identifies relevant analogies
2. Maps relationships
3. Transfers knowledge
4. Validates mappings
5. Refines analogies
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize analogical reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.min_similarity = self.config.get('min_similarity', 0.6)
self.max_candidates = self.config.get('max_candidates', 5)
self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
# Knowledge base
self.patterns: Dict[str, AnalogicalPattern] = {}
self.mappings: Dict[str, AnalogicalMapping] = {}
self.solutions: Dict[str, AnalogicalSolution] = {}
# Performance metrics
self.performance_metrics = {
'pattern_matches': 0,
'successful_mappings': 0,
'failed_mappings': 0,
'adaptation_success_rate': 0.0,
'avg_solution_confidence': 0.0,
'pattern_distribution': defaultdict(int),
'mapping_distribution': defaultdict(int),
'total_patterns_used': 0,
'total_mappings_created': 0,
'total_solutions_generated': 0
}
async def reason(
self,
query: str,
context: Dict[str, Any]
) -> StrategyResult:
"""
Apply analogical reasoning to analyze the query.
Args:
query: The query to reason about
context: Additional context and parameters
Returns:
StrategyResult containing the reasoning output and metadata
"""
try:
# Extract patterns
patterns = await self._extract_patterns(query, context)
self.performance_metrics['total_patterns_used'] = len(patterns)
# Find matches
matches = await self._find_matches(patterns, context)
self.performance_metrics['pattern_matches'] = len(matches)
# Create mappings
mappings = await self._create_mappings(matches, context)
self.performance_metrics['total_mappings_created'] = len(mappings)
# Generate solutions
solutions = await self._generate_solutions(mappings, context)
self.performance_metrics['total_solutions_generated'] = len(solutions)
# Select best solution
best_solution = await self._select_best_solution(solutions, context)
if best_solution:
# Update knowledge base
self._update_knowledge(patterns, mappings, best_solution)
# Update metrics
self._update_metrics(patterns, mappings, solutions, best_solution)
# Build reasoning trace
reasoning_trace = self._build_reasoning_trace(
patterns, matches, mappings, solutions, best_solution
)
return StrategyResult(
strategy_type="analogical",
success=True,
answer=best_solution.inference.get('conclusion'),
confidence=best_solution.confidence,
reasoning_trace=reasoning_trace,
metadata={
'source_analogy': best_solution.source_analogy,
'mapping_type': best_solution.mapping.type.value,
'adaptation_details': best_solution.adaptation,
'validation_results': best_solution.validation
},
performance_metrics=self.performance_metrics
)
return StrategyResult(
strategy_type="analogical",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
'step': 'error',
'error': 'No valid solution found',
'timestamp': datetime.now().isoformat()
}],
metadata={'error': 'No valid solution found'},
performance_metrics=self.performance_metrics
)
except Exception as e:
logging.error(f"Analogical reasoning error: {str(e)}")
return StrategyResult(
strategy_type="analogical",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
'step': 'error',
'error': str(e),
'timestamp': datetime.now().isoformat()
}],
metadata={'error': str(e)},
performance_metrics=self.performance_metrics
)
async def _extract_patterns(
self,
query: str,
context: Dict[str, Any]
) -> List[AnalogicalPattern]:
"""Extract patterns from query for analogical matching."""
# This is a placeholder implementation
# In practice, this would use more sophisticated pattern extraction
pattern = AnalogicalPattern(
id=f"pattern_{len(self.patterns)}",
level=AnalogicalLevel.SURFACE,
features={'query': query},
relations=[],
constraints=[],
metadata={'context': context}
)
return [pattern]
async def _find_matches(
self,
patterns: List[AnalogicalPattern],
context: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Find matching patterns in knowledge base."""
matches = []
for pattern in patterns:
# Example matching logic
similarity = np.random.random() # Placeholder
if similarity >= self.min_similarity:
matches.append({
'pattern': pattern,
'similarity': similarity,
'features': pattern.features
})
return sorted(
matches,
key=lambda x: x['similarity'],
reverse=True
)[:self.max_candidates]
async def _create_mappings(
self,
matches: List[Dict[str, Any]],
context: Dict[str, Any]
) -> List[AnalogicalMapping]:
"""Create mappings between source and target domains."""
mappings = []
for match in matches:
mapping = AnalogicalMapping(
id=f"mapping_{len(self.mappings)}",
type=MappingType.DIRECT,
source_elements=match['features'],
target_elements=context,
correspondences=[],
transformations=[],
confidence=match['similarity']
)
mappings.append(mapping)
return mappings
async def _generate_solutions(
self,
mappings: List[AnalogicalMapping],
context: Dict[str, Any]
) -> List[AnalogicalSolution]:
"""Generate solutions through analogical transfer."""
solutions = []
for mapping in mappings:
if mapping.confidence >= self.adaptation_threshold:
solution = AnalogicalSolution(
id=f"solution_{len(self.solutions)}",
source_analogy=str(mapping.source_elements),
mapping=mapping,
adaptation={'applied_rules': []},
inference={'conclusion': 'Analogical solution'},
confidence=mapping.confidence,
validation={'checks_passed': True},
metadata={'context': context}
)
solutions.append(solution)
return solutions
async def _select_best_solution(
self,
solutions: List[AnalogicalSolution],
context: Dict[str, Any]
) -> Optional[AnalogicalSolution]:
"""Select the best solution based on multiple criteria."""
if not solutions:
return None
# Sort by confidence and return best
return max(solutions, key=lambda x: x.confidence)
def _update_knowledge(
self,
patterns: List[AnalogicalPattern],
mappings: List[AnalogicalMapping],
solution: AnalogicalSolution
) -> None:
"""Update knowledge base with new patterns and successful mappings."""
# Store new patterns
for pattern in patterns:
self.patterns[pattern.id] = pattern
# Store successful mappings
for mapping in mappings:
if mapping.confidence >= self.min_confidence:
self.mappings[mapping.id] = mapping
# Store successful solution
self.solutions[solution.id] = solution
def _update_metrics(
self,
patterns: List[AnalogicalPattern],
mappings: List[AnalogicalMapping],
solutions: List[AnalogicalSolution],
best_solution: AnalogicalSolution
) -> None:
"""Update performance metrics."""
# Update pattern distribution
for pattern in patterns:
self.performance_metrics['pattern_distribution'][pattern.level] += 1
# Update mapping distribution
for mapping in mappings:
self.performance_metrics['mapping_distribution'][mapping.type] += 1
if mapping.confidence >= self.min_confidence:
self.performance_metrics['successful_mappings'] += 1
else:
self.performance_metrics['failed_mappings'] += 1
# Calculate adaptation success rate
total_adaptations = len(solutions)
successful_adaptations = sum(
1 for s in solutions
if s.confidence >= self.adaptation_threshold
)
self.performance_metrics['adaptation_success_rate'] = (
successful_adaptations / total_adaptations
if total_adaptations > 0 else 0.0
)
# Calculate average solution confidence
self.performance_metrics['avg_solution_confidence'] = (
sum(s.confidence for s in solutions) / len(solutions)
if solutions else 0.0
)
def _build_reasoning_trace(
self,
patterns: List[AnalogicalPattern],
matches: List[Dict[str, Any]],
mappings: List[AnalogicalMapping],
solutions: List[AnalogicalSolution],
best_solution: AnalogicalSolution
) -> List[Dict[str, Any]]:
"""Build the reasoning trace for the solution."""
trace = []
# Pattern extraction step
trace.append({
'step': 'pattern_extraction',
'patterns': [self._pattern_to_dict(p) for p in patterns],
'timestamp': datetime.now().isoformat()
})
# Pattern matching step
trace.append({
'step': 'pattern_matching',
'matches': matches,
'timestamp': datetime.now().isoformat()
})
# Mapping creation step
trace.append({
'step': 'mapping_creation',
'mappings': [self._mapping_to_dict(m) for m in mappings],
'timestamp': datetime.now().isoformat()
})
# Solution generation step
trace.append({
'step': 'solution_generation',
'solutions': [self._solution_to_dict(s) for s in solutions],
'timestamp': datetime.now().isoformat()
})
# Best solution selection step
trace.append({
'step': 'solution_selection',
'selected_solution': self._solution_to_dict(best_solution),
'timestamp': datetime.now().isoformat()
})
return trace
def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]:
"""Convert pattern to dictionary for serialization."""
return {
'id': pattern.id,
'level': pattern.level.value,
'features': pattern.features,
'relations': pattern.relations,
'constraints': pattern.constraints,
'metadata': pattern.metadata,
'timestamp': pattern.timestamp
}
def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]:
"""Convert mapping to dictionary for serialization."""
return {
'id': mapping.id,
'type': mapping.type.value,
'source_elements': mapping.source_elements,
'target_elements': mapping.target_elements,
'correspondences': mapping.correspondences,
'transformations': mapping.transformations,
'confidence': mapping.confidence,
'timestamp': mapping.timestamp
}
def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]:
"""Convert solution to dictionary for serialization."""
return {
'id': solution.id,
'source_analogy': solution.source_analogy,
'mapping': self._mapping_to_dict(solution.mapping),
'adaptation': solution.adaptation,
'inference': solution.inference,
'confidence': solution.confidence,
'validation': solution.validation,
'metadata': solution.metadata,
'timestamp': solution.timestamp
}
def clear_knowledge_base(self) -> None:
"""Clear the knowledge base."""
self.patterns.clear()
self.mappings.clear()
self.solutions.clear()
# Reset performance metrics
self.performance_metrics.update({
'pattern_matches': 0,
'successful_mappings': 0,
'failed_mappings': 0,
'adaptation_success_rate': 0.0,
'avg_solution_confidence': 0.0,
'pattern_distribution': defaultdict(int),
'mapping_distribution': defaultdict(int),
'total_patterns_used': 0,
'total_mappings_created': 0,
'total_solutions_generated': 0
})
|