File size: 4,864 Bytes
4eff8a8 6136624 4eff8a8 caa4a26 6136624 caa4a26 6136624 5c4ad30 caa4a26 4eff8a8 6136624 4eff8a8 6136624 4eff8a8 6136624 4eff8a8 caa4a26 6136624 4eff8a8 6136624 4eff8a8 6136624 4eff8a8 6136624 4eff8a8 6136624 4eff8a8 3e7569f 4eff8a8 6136624 4eff8a8 6136624 4eff8a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import json
import random
import gradio as gr
from difflib import SequenceMatcher
with open("qwen_gsm8k_output.jsonl", "r") as file:
qwen_dict = [json.loads(line) for line in file]
with open("phi4_gsm8k_output.jsonl", "r") as file:
phi4_dict = [json.loads(line) for line in file]
models_data = {
"Qwen/Qwen2.5-14B" : qwen_dict,
"microsoft/phi-4" : phi4_dict
}
starting_index = 0
starting_model = [model_name for model_name in models_data.keys()][0]
description_text = """
This Space is inspired by [Luis Hunt's](https://www.linkedin.com/posts/louiswhunt_see-below-for-6882-pages-of-mmlu-and-gsm8k-activity-7281011488692047872-fWCE?utm_source=share&utm_medium=member_desktop) post.
He highlights how current top performing models from major vendors are contaminated with benchmark data that is supposed to be used to assess their performance.
This space aims to partially reproduce this work.
I chose to look at the contamination of **Qwen/Qwen2.5-14B** and **microsoft/phi-4** by **GSM8K** dataset.
For **Qwen/Qwen2.5-14B** I found **729** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.
For **microsoft/phi-4** I found **172** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.
"""
def find_similar_chunks(original, output):
matcher = SequenceMatcher(None, original, output)
left = 0
highlighted_sequence = []
for _, j, n in matcher.get_matching_blocks():
if left < j:
highlighted_sequence.append((output[left:j], None))
highlighted_sequence.append((output[j:j+n], 1))
left = j + n
if j+n < len(output) - 1:
highlighted_sequence.append((output[j+n:], None))
highlighted_sequence = highlighted_sequence[:-1]
return highlighted_sequence
def next_example(selected_model):
new_example = random.choice(models_data[selected_model])
highlighted_output = find_similar_chunks(new_example["original"], new_example["output"])
return(
[
new_example["prompt"],
new_example["original"],
highlighted_output,
new_example["similarity_ratio"],
new_example["seed"]
]
)
def change_model(selected_model):
example = models_data[selected_model][starting_index]
highlighted_output = find_similar_chunks(example["original"], example["output"])
return(
[
example["prompt"],
example["original"],
highlighted_output,
example["similarity_ratio"],
example["seed"]
]
)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(description_text)
with gr.Column(scale=1):
pass
with gr.Row():
with gr.Column(scale=1):
selected_model = gr.Dropdown(
[model_name for model_name in models_data.keys()],
value=[model_name for model_name in models_data.keys()][0],
interactive=True,
label="Model"
)
with gr.Column(scale=4):
prompt = gr.Textbox(
label="Prompt",
interactive=False,
value=models_data[starting_model][starting_index]["prompt"],
)
with gr.Row():
with gr.Column(scale=4):
original = gr.Textbox(
label="Original",
interactive=False,
value=models_data[starting_model][starting_index]["original"],
)
with gr.Column(scale=4):
output = gr.HighlightedText(
label="Output",
color_map={"1": "yellow"},
value=find_similar_chunks(models_data[starting_model][starting_index]["original"],
models_data[starting_model][starting_index]["output"]),
)
with gr.Row():
with gr.Column(scale=1):
similarity = gr.Textbox(
label="Similarity ratio",
interactive=False,
value=models_data[starting_model][starting_index]["similarity_ratio"],
)
with gr.Column(scale=1):
seed = gr.Textbox(
label="Seed",
interactive=False,
value=models_data[starting_model][starting_index]["seed"],
)
next_btn = gr.Button("Anoter example")
next_btn.click(fn=next_example,
inputs=[selected_model],
outputs=[prompt, original, output, similarity, seed])
selected_model.change(fn=change_model,
inputs=[selected_model],
outputs=[prompt, original, output, similarity, seed])
demo.launch() |