File size: 4,864 Bytes
4eff8a8
 
 
 
 
 
6136624
 
 
 
 
 
 
 
 
 
 
 
 
 
4eff8a8
caa4a26
 
 
6136624
 
 
caa4a26
6136624
 
5c4ad30
caa4a26
 
4eff8a8
 
 
 
 
 
 
 
 
 
 
 
6136624
4eff8a8
 
6136624
 
4eff8a8
 
 
 
 
 
 
 
 
 
 
 
6136624
 
 
 
 
 
 
 
 
 
 
 
 
 
4eff8a8
caa4a26
 
 
 
 
6136624
 
 
 
 
 
 
 
 
 
 
 
 
 
4eff8a8
 
 
 
 
6136624
4eff8a8
 
 
 
 
6136624
 
4eff8a8
 
 
 
 
 
 
6136624
4eff8a8
 
 
 
 
6136624
4eff8a8
3e7569f
4eff8a8
 
 
6136624
 
4eff8a8
6136624
 
 
4eff8a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import json
import random

import gradio as gr
from difflib import SequenceMatcher

with open("qwen_gsm8k_output.jsonl", "r") as file:
    qwen_dict = [json.loads(line) for line in file]

with open("phi4_gsm8k_output.jsonl", "r") as file:
    phi4_dict = [json.loads(line) for line in file]

models_data = {
    "Qwen/Qwen2.5-14B" : qwen_dict,
    "microsoft/phi-4" : phi4_dict
}

starting_index = 0
starting_model = [model_name for model_name in models_data.keys()][0]


description_text = """
This Space is inspired by [Luis Hunt's](https://www.linkedin.com/posts/louiswhunt_see-below-for-6882-pages-of-mmlu-and-gsm8k-activity-7281011488692047872-fWCE?utm_source=share&utm_medium=member_desktop) post.
He highlights how current top performing models from major vendors are contaminated with benchmark data that is supposed to be used to assess their performance.
This space aims to partially reproduce this work.

I chose to look at the contamination of **Qwen/Qwen2.5-14B** and **microsoft/phi-4** by **GSM8K** dataset.

For **Qwen/Qwen2.5-14B** I found **729** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.
For **microsoft/phi-4** I found **172** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.

"""


def find_similar_chunks(original, output):
    matcher = SequenceMatcher(None, original, output)
    left = 0
    highlighted_sequence = []
    for _, j, n in matcher.get_matching_blocks():
        if left < j:
            highlighted_sequence.append((output[left:j], None))
        highlighted_sequence.append((output[j:j+n], 1))
        left = j + n
    if j+n < len(output) - 1:
        highlighted_sequence.append((output[j+n:], None))
    highlighted_sequence = highlighted_sequence[:-1]
    return highlighted_sequence

def next_example(selected_model):
    new_example = random.choice(models_data[selected_model])

    highlighted_output = find_similar_chunks(new_example["original"], new_example["output"])
    return(
        [
            new_example["prompt"],
            new_example["original"], 
            highlighted_output, 
            new_example["similarity_ratio"],
            new_example["seed"]
        ]
    )

def change_model(selected_model):
    example = models_data[selected_model][starting_index]

    highlighted_output = find_similar_chunks(example["original"], example["output"])
    return(
        [
            example["prompt"],
            example["original"], 
            highlighted_output, 
            example["similarity_ratio"],
            example["seed"]
        ]
    )

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(description_text)
        with gr.Column(scale=1):
            pass
    with gr.Row():
        with gr.Column(scale=1):
            selected_model = gr.Dropdown(
                [model_name for model_name in models_data.keys()],
                value=[model_name for model_name in models_data.keys()][0],
                interactive=True,
                label="Model"
            )
        with gr.Column(scale=4):
            prompt = gr.Textbox(
                label="Prompt",
                interactive=False,
                value=models_data[starting_model][starting_index]["prompt"],
            )
    with gr.Row():
        with gr.Column(scale=4):
            original = gr.Textbox(
                label="Original",
                interactive=False,
                value=models_data[starting_model][starting_index]["original"],
            )
        with gr.Column(scale=4):
            output = gr.HighlightedText(
                label="Output",
                color_map={"1": "yellow"},
                value=find_similar_chunks(models_data[starting_model][starting_index]["original"], 
                                        models_data[starting_model][starting_index]["output"]),
            )

        with gr.Row():
            with gr.Column(scale=1):
                similarity = gr.Textbox(
                    label="Similarity ratio",
                    interactive=False,
                    value=models_data[starting_model][starting_index]["similarity_ratio"],
                )
            with gr.Column(scale=1):
                seed = gr.Textbox(
                    label="Seed",
                    interactive=False,
                    value=models_data[starting_model][starting_index]["seed"],
                )

    next_btn = gr.Button("Anoter example")
    
    next_btn.click(fn=next_example, 
                   inputs=[selected_model],
                   outputs=[prompt, original, output, similarity, seed])

    selected_model.change(fn=change_model,
                          inputs=[selected_model],
                          outputs=[prompt, original, output, similarity, seed])

demo.launch()