leonard-dls
commited on
Commit
·
6136624
1
Parent(s):
5c4ad30
add phi4
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +60 -23
- phi4_gsm8k_output.jsonl +0 -0
- dataset.jsonl → qwen_gsm8k_output.jsonl +0 -0
__pycache__/app.cpython-310.pyc
ADDED
Binary file (4.18 kB). View file
|
|
app.py
CHANGED
@@ -4,17 +4,31 @@ import random
|
|
4 |
import gradio as gr
|
5 |
from difflib import SequenceMatcher
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
description_text = """
|
12 |
This Space is inspired by [Luis Hunt's](https://www.linkedin.com/posts/louiswhunt_see-below-for-6882-pages-of-mmlu-and-gsm8k-activity-7281011488692047872-fWCE?utm_source=share&utm_medium=member_desktop) post.
|
13 |
He highlights how current top performing models from major vendors are contaminated with benchmark data that is supposed to be used to assess their performance.
|
|
|
|
|
|
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
-
I found **729** GSM8K Example that had a least a 0.9 text similarity ratio between generated an original.
|
18 |
"""
|
19 |
|
20 |
|
@@ -29,14 +43,11 @@ def find_similar_chunks(original, output):
|
|
29 |
left = j + n
|
30 |
if j+n < len(output) - 1:
|
31 |
highlighted_sequence.append((output[j+n:], None))
|
32 |
-
|
33 |
return highlighted_sequence
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
def next_example():
|
39 |
-
new_example = random.choice(examples)
|
40 |
|
41 |
highlighted_output = find_similar_chunks(new_example["original"], new_example["output"])
|
42 |
return(
|
@@ -49,30 +60,53 @@ def next_example():
|
|
49 |
]
|
50 |
)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
with gr.Blocks() as demo:
|
53 |
with gr.Row():
|
54 |
with gr.Column(scale=1):
|
55 |
gr.Markdown(description_text)
|
56 |
with gr.Column(scale=1):
|
57 |
pass
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
with gr.Row():
|
64 |
with gr.Column(scale=4):
|
65 |
original = gr.Textbox(
|
66 |
label="Original",
|
67 |
interactive=False,
|
68 |
-
value=
|
69 |
)
|
70 |
with gr.Column(scale=4):
|
71 |
output = gr.HighlightedText(
|
72 |
label="Output",
|
73 |
color_map={"1": "yellow"},
|
74 |
-
value=find_similar_chunks(
|
75 |
-
|
76 |
)
|
77 |
|
78 |
with gr.Row():
|
@@ -80,20 +114,23 @@ with gr.Blocks() as demo:
|
|
80 |
similarity = gr.Textbox(
|
81 |
label="Similarity ratio",
|
82 |
interactive=False,
|
83 |
-
value=
|
84 |
)
|
85 |
with gr.Column(scale=1):
|
86 |
seed = gr.Textbox(
|
87 |
label="Seed",
|
88 |
interactive=False,
|
89 |
-
value=
|
90 |
)
|
91 |
|
92 |
next_btn = gr.Button("Anoter example")
|
93 |
|
94 |
next_btn.click(fn=next_example,
|
95 |
-
|
96 |
-
|
97 |
|
|
|
|
|
|
|
98 |
|
99 |
demo.launch()
|
|
|
4 |
import gradio as gr
|
5 |
from difflib import SequenceMatcher
|
6 |
|
7 |
+
with open("qwen_gsm8k_output.jsonl", "r") as file:
|
8 |
+
qwen_dict = [json.loads(line) for line in file]
|
9 |
+
|
10 |
+
with open("phi4_gsm8k_output.jsonl", "r") as file:
|
11 |
+
phi4_dict = [json.loads(line) for line in file]
|
12 |
+
|
13 |
+
models_data = {
|
14 |
+
"Qwen/Qwen2.5-14B" : qwen_dict,
|
15 |
+
"microsoft/phi-4" : phi4_dict
|
16 |
+
}
|
17 |
+
|
18 |
+
starting_index = 0
|
19 |
+
starting_model = [model_name for model_name in models_data.keys()][0]
|
20 |
+
|
21 |
|
22 |
description_text = """
|
23 |
This Space is inspired by [Luis Hunt's](https://www.linkedin.com/posts/louiswhunt_see-below-for-6882-pages-of-mmlu-and-gsm8k-activity-7281011488692047872-fWCE?utm_source=share&utm_medium=member_desktop) post.
|
24 |
He highlights how current top performing models from major vendors are contaminated with benchmark data that is supposed to be used to assess their performance.
|
25 |
+
This space aims to partially reproduce this work.
|
26 |
+
|
27 |
+
I chose to look at the contamination of **Qwen/Qwen2.5-14B** and **microsoft/phi-4** by **GSM8K** dataset.
|
28 |
|
29 |
+
For **Qwen/Qwen2.5-14B** I found **729** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.
|
30 |
+
For **microsoft/phi-4** I found **172** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.
|
31 |
|
|
|
32 |
"""
|
33 |
|
34 |
|
|
|
43 |
left = j + n
|
44 |
if j+n < len(output) - 1:
|
45 |
highlighted_sequence.append((output[j+n:], None))
|
46 |
+
highlighted_sequence = highlighted_sequence[:-1]
|
47 |
return highlighted_sequence
|
48 |
|
49 |
+
def next_example(selected_model):
|
50 |
+
new_example = random.choice(models_data[selected_model])
|
|
|
|
|
|
|
51 |
|
52 |
highlighted_output = find_similar_chunks(new_example["original"], new_example["output"])
|
53 |
return(
|
|
|
60 |
]
|
61 |
)
|
62 |
|
63 |
+
def change_model(selected_model):
|
64 |
+
example = models_data[selected_model][starting_index]
|
65 |
+
|
66 |
+
highlighted_output = find_similar_chunks(example["original"], example["output"])
|
67 |
+
return(
|
68 |
+
[
|
69 |
+
example["prompt"],
|
70 |
+
example["original"],
|
71 |
+
highlighted_output,
|
72 |
+
example["similarity_ratio"],
|
73 |
+
example["seed"]
|
74 |
+
]
|
75 |
+
)
|
76 |
+
|
77 |
with gr.Blocks() as demo:
|
78 |
with gr.Row():
|
79 |
with gr.Column(scale=1):
|
80 |
gr.Markdown(description_text)
|
81 |
with gr.Column(scale=1):
|
82 |
pass
|
83 |
+
with gr.Row():
|
84 |
+
with gr.Column(scale=1):
|
85 |
+
selected_model = gr.Dropdown(
|
86 |
+
[model_name for model_name in models_data.keys()],
|
87 |
+
value=[model_name for model_name in models_data.keys()][0],
|
88 |
+
interactive=True,
|
89 |
+
label="Model"
|
90 |
+
)
|
91 |
+
with gr.Column(scale=4):
|
92 |
+
prompt = gr.Textbox(
|
93 |
+
label="Prompt",
|
94 |
+
interactive=False,
|
95 |
+
value=models_data[starting_model][starting_index]["prompt"],
|
96 |
+
)
|
97 |
with gr.Row():
|
98 |
with gr.Column(scale=4):
|
99 |
original = gr.Textbox(
|
100 |
label="Original",
|
101 |
interactive=False,
|
102 |
+
value=models_data[starting_model][starting_index]["original"],
|
103 |
)
|
104 |
with gr.Column(scale=4):
|
105 |
output = gr.HighlightedText(
|
106 |
label="Output",
|
107 |
color_map={"1": "yellow"},
|
108 |
+
value=find_similar_chunks(models_data[starting_model][starting_index]["original"],
|
109 |
+
models_data[starting_model][starting_index]["output"]),
|
110 |
)
|
111 |
|
112 |
with gr.Row():
|
|
|
114 |
similarity = gr.Textbox(
|
115 |
label="Similarity ratio",
|
116 |
interactive=False,
|
117 |
+
value=models_data[starting_model][starting_index]["similarity_ratio"],
|
118 |
)
|
119 |
with gr.Column(scale=1):
|
120 |
seed = gr.Textbox(
|
121 |
label="Seed",
|
122 |
interactive=False,
|
123 |
+
value=models_data[starting_model][starting_index]["seed"],
|
124 |
)
|
125 |
|
126 |
next_btn = gr.Button("Anoter example")
|
127 |
|
128 |
next_btn.click(fn=next_example,
|
129 |
+
inputs=[selected_model],
|
130 |
+
outputs=[prompt, original, output, similarity, seed])
|
131 |
|
132 |
+
selected_model.change(fn=change_model,
|
133 |
+
inputs=[selected_model],
|
134 |
+
outputs=[prompt, original, output, similarity, seed])
|
135 |
|
136 |
demo.launch()
|
phi4_gsm8k_output.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset.jsonl → qwen_gsm8k_output.jsonl
RENAMED
File without changes
|