text-to-video / app.py
hivecorp's picture
Update app.py
2b5d6f0 verified
raw
history blame
4.22 kB
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from moviepy.editor import AudioFileClip
import re
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
# Text to speech function
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter the text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
# Generate SRT based on estimated timing
def generate_srt(text, speech_rate, max_words_per_line):
# Clean up input text
text = re.sub(r'\s+', ' ', text.strip()) # Remove excessive whitespace
# Split into words
words = text.split()
# Calculate timing for each line
srt_lines = []
current_line = []
current_time = 0.0 # Start time in seconds
total_words = len(words)
for i, word in enumerate(words):
current_line.append(word)
# Calculate current line length
if len(current_line) >= max_words_per_line or i == total_words - 1:
# Create SRT entry
line_text = ' '.join(current_line)
duration = len(line_text.split()) / speech_rate # Estimate duration based on speech rate
# Format timing
start_time = current_time
end_time = current_time + duration
start_time_str = f"{int(start_time // 3600):02}:{int((start_time % 3600) // 60):02}:{int(start_time % 60):02},{int((start_time % 1) * 1000):03}"
end_time_str = f"{int(end_time // 3600):02}:{int((end_time % 3600) // 60):02}:{int(end_time % 60):02},{int((end_time % 1) * 1000):03}"
srt_lines.append(f"{len(srt_lines) + 1}\n{start_time_str} --> {end_time_str}\n{line_text}\n")
# Move to the next line
current_line = []
current_time += duration # Update current time
return ''.join(srt_lines)
# Gradio interface function
def tts_interface(text, voice, rate, pitch, speech_rate, max_words_per_line):
audio_path, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
if warning:
return None, None, warning
# Generate SRT file
srt_content = generate_srt(text, speech_rate, max_words_per_line)
srt_path = audio_path.replace('.mp3', '_subtitle.srt')
with open(srt_path, 'w') as f:
f.write(srt_content)
return audio_path, srt_path, None
# Create Gradio app
async def create_demo():
voices = await get_voices()
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""),
gr.Slider(minimum=-50, maximum=50, value=0, label="Rate Adjustment (%)", step=1),
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1),
gr.Slider(minimum=100, maximum=300, value=150, label="Speech Rate (words per minute)", step=1),
gr.Slider(minimum=3, maximum=8, value=5, label="Max Words per Line", step=1),
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.File(label="Generated Subtitle (.srt)"),
gr.Markdown(label="Warning", visible=False)
],
title="Edge TTS Text to Speech with SRT",
description="Convert text to speech and generate synchronized subtitles based on speech rate.",
analytics_enabled=False,
allow_flagging=False,
)
return demo
# Run the app
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()