Spaces:
Runtime error
Runtime error
import gradio as gr | |
import edge_tts | |
import asyncio | |
import tempfile | |
import os | |
from moviepy.editor import AudioFileClip | |
import re | |
# Get all available voices | |
async def get_voices(): | |
voices = await edge_tts.list_voices() | |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices} | |
# Text to speech function | |
async def text_to_speech(text, voice, rate, pitch): | |
if not text.strip(): | |
return None, gr.Warning("Please enter the text to convert.") | |
if not voice: | |
return None, gr.Warning("Please select a voice.") | |
voice_short_name = voice.split(" - ")[0] | |
rate_str = f"{rate:+d}%" | |
pitch_str = f"{pitch:+d}Hz" | |
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path, None | |
# Generate SRT based on estimated timing | |
def generate_srt(text, speech_rate, max_words_per_line): | |
# Clean up input text | |
text = re.sub(r'\s+', ' ', text.strip()) # Remove excessive whitespace | |
# Split into words | |
words = text.split() | |
# Calculate timing for each line | |
srt_lines = [] | |
current_line = [] | |
current_time = 0.0 # Start time in seconds | |
total_words = len(words) | |
for i, word in enumerate(words): | |
current_line.append(word) | |
# Calculate current line length | |
if len(current_line) >= max_words_per_line or i == total_words - 1: | |
# Create SRT entry | |
line_text = ' '.join(current_line) | |
duration = len(line_text.split()) / speech_rate # Estimate duration based on speech rate | |
# Format timing | |
start_time = current_time | |
end_time = current_time + duration | |
start_time_str = f"{int(start_time // 3600):02}:{int((start_time % 3600) // 60):02}:{int(start_time % 60):02},{int((start_time % 1) * 1000):03}" | |
end_time_str = f"{int(end_time // 3600):02}:{int((end_time % 3600) // 60):02}:{int(end_time % 60):02},{int((end_time % 1) * 1000):03}" | |
srt_lines.append(f"{len(srt_lines) + 1}\n{start_time_str} --> {end_time_str}\n{line_text}\n") | |
# Move to the next line | |
current_line = [] | |
current_time += duration # Update current time | |
return ''.join(srt_lines) | |
# Gradio interface function | |
def tts_interface(text, voice, rate, pitch, speech_rate, max_words_per_line): | |
audio_path, warning = asyncio.run(text_to_speech(text, voice, rate, pitch)) | |
if warning: | |
return None, None, warning | |
# Generate SRT file | |
srt_content = generate_srt(text, speech_rate, max_words_per_line) | |
srt_path = audio_path.replace('.mp3', '_subtitle.srt') | |
with open(srt_path, 'w') as f: | |
f.write(srt_content) | |
return audio_path, srt_path, None | |
# Create Gradio app | |
async def create_demo(): | |
voices = await get_voices() | |
demo = gr.Interface( | |
fn=tts_interface, | |
inputs=[ | |
gr.Textbox(label="Input Text", lines=5), | |
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""), | |
gr.Slider(minimum=-50, maximum=50, value=0, label="Rate Adjustment (%)", step=1), | |
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1), | |
gr.Slider(minimum=100, maximum=300, value=150, label="Speech Rate (words per minute)", step=1), | |
gr.Slider(minimum=3, maximum=8, value=5, label="Max Words per Line", step=1), | |
], | |
outputs=[ | |
gr.Audio(label="Generated Audio", type="filepath"), | |
gr.File(label="Generated Subtitle (.srt)"), | |
gr.Markdown(label="Warning", visible=False) | |
], | |
title="Edge TTS Text to Speech with SRT", | |
description="Convert text to speech and generate synchronized subtitles based on speech rate.", | |
analytics_enabled=False, | |
allow_flagging=False, | |
) | |
return demo | |
# Run the app | |
if __name__ == "__main__": | |
demo = asyncio.run(create_demo()) | |
demo.launch() | |