Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,14 @@ import asyncio
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
from moviepy.editor import AudioFileClip
|
7 |
-
import
|
8 |
|
9 |
# Get all available voices
|
10 |
async def get_voices():
|
11 |
voices = await edge_tts.list_voices()
|
12 |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
13 |
|
14 |
-
# Text to speech
|
15 |
async def text_to_speech(text, voice, rate, pitch):
|
16 |
if not text.strip():
|
17 |
return None, gr.Warning("Please enter the text to convert.")
|
@@ -27,120 +27,84 @@ async def text_to_speech(text, voice, rate, pitch):
|
|
27 |
await communicate.save(tmp_path)
|
28 |
return tmp_path, None
|
29 |
|
30 |
-
#
|
31 |
-
def
|
32 |
-
|
33 |
-
|
34 |
-
audio_data = recognizer.record(source)
|
35 |
-
# Recognize speech using Google Web Speech API
|
36 |
-
try:
|
37 |
-
text = recognizer.recognize_google(audio_data)
|
38 |
-
return text
|
39 |
-
except sr.UnknownValueError:
|
40 |
-
return ""
|
41 |
-
except sr.RequestError:
|
42 |
-
return ""
|
43 |
-
|
44 |
-
# Generate SRT file based on user preferences
|
45 |
-
def generate_srt(words, audio_duration, srt_path, words_per_line, lines_per_paragraph):
|
46 |
-
total_segments = (len(words) // words_per_line) // lines_per_paragraph + 1
|
47 |
-
segment_duration = audio_duration / total_segments # Calculate duration for each segment
|
48 |
-
|
49 |
-
current_time = 0
|
50 |
-
with open(srt_path, 'w', encoding='utf-8') as srt_file:
|
51 |
-
for i in range(0, len(words), words_per_line):
|
52 |
-
# Gather lines based on the defined words per line
|
53 |
-
lines = words[i:i + words_per_line]
|
54 |
-
line_text = ' '.join(lines)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
start_time = current_time
|
57 |
-
end_time =
|
58 |
|
59 |
-
start_time_str =
|
60 |
-
end_time_str =
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
def format_srt_time(seconds):
|
69 |
-
millis = int((seconds - int(seconds)) * 1000)
|
70 |
-
seconds = int(seconds)
|
71 |
-
minutes = seconds // 60
|
72 |
-
hours = seconds // 3600
|
73 |
-
minutes %= 60
|
74 |
-
seconds %= 60
|
75 |
-
return f"{hours:02}:{minutes:02}:{seconds:02},{millis:03}"
|
76 |
|
77 |
-
|
78 |
-
async def text_to_audio_and_srt(text, voice, rate, pitch, words_per_line, lines_per_paragraph):
|
79 |
-
# Clean up input text: remove extra spaces and newlines
|
80 |
-
cleaned_text = ' '.join(text.split())
|
81 |
|
82 |
-
|
|
|
|
|
83 |
if warning:
|
84 |
return None, None, warning
|
85 |
-
|
86 |
-
audio_clip = AudioFileClip(audio_path)
|
87 |
-
audio_duration = audio_clip.duration
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
# Generate SRT file based on the entire text
|
93 |
-
base_name = os.path.splitext(audio_path)[0]
|
94 |
-
srt_path = f"{base_name}_subtitle.srt"
|
95 |
-
|
96 |
-
# Split input text into words
|
97 |
-
words = cleaned_text.split()
|
98 |
|
99 |
-
|
|
|
100 |
|
101 |
return audio_path, srt_path, None
|
102 |
|
103 |
-
# Gradio interface function
|
104 |
-
def tts_interface(text, voice, rate, pitch, words_per_line, lines_per_paragraph):
|
105 |
-
audio_path, srt_path, warning = asyncio.run(text_to_audio_and_srt(text, voice, rate, pitch, words_per_line, lines_per_paragraph))
|
106 |
-
return audio_path, srt_path, warning
|
107 |
-
|
108 |
# Create Gradio app
|
109 |
async def create_demo():
|
110 |
voices = await get_voices()
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
""
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
with gr.Column():
|
134 |
-
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
135 |
-
output_srt = gr.File(label="Generated SRT", file_count="single")
|
136 |
-
warning_msg = gr.Markdown(label="Warning", visible=False)
|
137 |
-
|
138 |
-
generate_button.click(
|
139 |
-
fn=tts_interface,
|
140 |
-
inputs=[text_input, voice_dropdown, rate_slider, pitch_slider, words_per_line, lines_per_paragraph],
|
141 |
-
outputs=[output_audio, output_srt, warning_msg]
|
142 |
-
)
|
143 |
-
|
144 |
return demo
|
145 |
|
146 |
# Run the app
|
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
from moviepy.editor import AudioFileClip
|
7 |
+
import re
|
8 |
|
9 |
# Get all available voices
|
10 |
async def get_voices():
|
11 |
voices = await edge_tts.list_voices()
|
12 |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
13 |
|
14 |
+
# Text to speech function
|
15 |
async def text_to_speech(text, voice, rate, pitch):
|
16 |
if not text.strip():
|
17 |
return None, gr.Warning("Please enter the text to convert.")
|
|
|
27 |
await communicate.save(tmp_path)
|
28 |
return tmp_path, None
|
29 |
|
30 |
+
# Generate SRT based on estimated timing
|
31 |
+
def generate_srt(text, speech_rate, max_words_per_line):
|
32 |
+
# Clean up input text
|
33 |
+
text = re.sub(r'\s+', ' ', text.strip()) # Remove excessive whitespace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Split into words
|
36 |
+
words = text.split()
|
37 |
+
|
38 |
+
# Calculate timing for each line
|
39 |
+
srt_lines = []
|
40 |
+
current_line = []
|
41 |
+
current_time = 0.0 # Start time in seconds
|
42 |
+
total_words = len(words)
|
43 |
+
|
44 |
+
for i, word in enumerate(words):
|
45 |
+
current_line.append(word)
|
46 |
+
|
47 |
+
# Calculate current line length
|
48 |
+
if len(current_line) >= max_words_per_line or i == total_words - 1:
|
49 |
+
# Create SRT entry
|
50 |
+
line_text = ' '.join(current_line)
|
51 |
+
duration = len(line_text.split()) / speech_rate # Estimate duration based on speech rate
|
52 |
+
|
53 |
+
# Format timing
|
54 |
start_time = current_time
|
55 |
+
end_time = current_time + duration
|
56 |
|
57 |
+
start_time_str = f"{int(start_time // 3600):02}:{int((start_time % 3600) // 60):02}:{int(start_time % 60):02},{int((start_time % 1) * 1000):03}"
|
58 |
+
end_time_str = f"{int(end_time // 3600):02}:{int((end_time % 3600) // 60):02}:{int(end_time % 60):02},{int((end_time % 1) * 1000):03}"
|
59 |
+
|
60 |
+
srt_lines.append(f"{len(srt_lines) + 1}\n{start_time_str} --> {end_time_str}\n{line_text}\n")
|
61 |
+
|
62 |
+
# Move to the next line
|
63 |
+
current_line = []
|
64 |
+
current_time += duration # Update current time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
return ''.join(srt_lines)
|
|
|
|
|
|
|
67 |
|
68 |
+
# Gradio interface function
|
69 |
+
def tts_interface(text, voice, rate, pitch, speech_rate, max_words_per_line):
|
70 |
+
audio_path, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
|
71 |
if warning:
|
72 |
return None, None, warning
|
|
|
|
|
|
|
73 |
|
74 |
+
# Generate SRT file
|
75 |
+
srt_content = generate_srt(text, speech_rate, max_words_per_line)
|
76 |
+
srt_path = audio_path.replace('.mp3', '_subtitle.srt')
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
with open(srt_path, 'w') as f:
|
79 |
+
f.write(srt_content)
|
80 |
|
81 |
return audio_path, srt_path, None
|
82 |
|
|
|
|
|
|
|
|
|
|
|
83 |
# Create Gradio app
|
84 |
async def create_demo():
|
85 |
voices = await get_voices()
|
86 |
|
87 |
+
demo = gr.Interface(
|
88 |
+
fn=tts_interface,
|
89 |
+
inputs=[
|
90 |
+
gr.Textbox(label="Input Text", lines=5),
|
91 |
+
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""),
|
92 |
+
gr.Slider(minimum=-50, maximum=50, value=0, label="Rate Adjustment (%)", step=1),
|
93 |
+
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1),
|
94 |
+
gr.Slider(minimum=100, maximum=300, value=150, label="Speech Rate (words per minute)", step=1),
|
95 |
+
gr.Slider(minimum=3, maximum=8, value=5, label="Max Words per Line", step=1),
|
96 |
+
],
|
97 |
+
outputs=[
|
98 |
+
gr.Audio(label="Generated Audio", type="filepath"),
|
99 |
+
gr.File(label="Generated Subtitle (.srt)"),
|
100 |
+
gr.Markdown(label="Warning", visible=False)
|
101 |
+
],
|
102 |
+
title="Edge TTS Text to Speech with SRT",
|
103 |
+
description="Convert text to speech and generate synchronized subtitles based on speech rate.",
|
104 |
+
analytics_enabled=False,
|
105 |
+
allow_flagging=False,
|
106 |
+
)
|
107 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return demo
|
109 |
|
110 |
# Run the app
|