|
import os |
|
from datasets import load_dataset |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments |
|
|
|
|
|
os.environ["HF_HOME"] = "/app/hf_cache" |
|
os.environ["HF_DATASETS_CACHE"] = "/app/hf_cache" |
|
os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache" |
|
|
|
|
|
dataset = load_dataset("tatsu-lab/alpaca") |
|
dataset["train"] = dataset["train"].select(range(2000)) |
|
|
|
|
|
print("Dataset splits available:", dataset) |
|
print("Sample row:", dataset["train"][0]) |
|
|
|
|
|
if "test" not in dataset: |
|
dataset = dataset["train"].train_test_split(test_size=0.1) |
|
|
|
|
|
model_name = "t5-large" |
|
tokenizer = T5Tokenizer.from_pretrained(model_name) |
|
model = T5ForConditionalGeneration.from_pretrained(model_name) |
|
model.gradient_checkpointing_disable() |
|
|
|
|
|
def tokenize_function(examples): |
|
inputs = examples["input"] |
|
targets = examples["output"] |
|
|
|
model_inputs = tokenizer(inputs, max_length=512, truncation=True, padding="max_length") |
|
labels = tokenizer(targets, max_length=512, truncation=True, padding="max_length") |
|
|
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
train_dataset = tokenized_datasets["train"] |
|
eval_dataset = tokenized_datasets["test"] |
|
|
|
print("Dataset successfully split and tokenized.") |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="/tmp/results", |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
evaluation_strategy="steps", |
|
save_steps=500, |
|
eval_steps=500, |
|
logging_dir="/tmp/logs", |
|
logging_steps=100, |
|
save_total_limit=2, |
|
fp16=True |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
) |
|
|
|
save_dir = "/tmp/t5-finetuned" |
|
os.makedirs(save_dir, exist_ok=True) |
|
trainer.save_model(save_dir) |
|
|
|
|
|
trainer.train() |
|
|
|
print("Fine-tuning complete!") |
|
|
|
|
|
trainer.save_model("./t5-finetuned") |
|
|
|
print("Model saved successfully!") |
|
|