Update train.py
Browse files
train.py
CHANGED
@@ -47,20 +47,17 @@ print("Dataset successfully split and tokenized.")
|
|
47 |
|
48 |
# Define training arguments
|
49 |
training_args = TrainingArguments(
|
50 |
-
output_dir="
|
51 |
-
|
52 |
-
save_strategy="epoch",
|
53 |
-
learning_rate=5e-6, # Reduce from 5e-5 to 5e-6
|
54 |
-
per_device_train_batch_size=8, # Keep batch size reasonable
|
55 |
per_device_eval_batch_size=8,
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
fp16=True
|
61 |
)
|
62 |
-
|
63 |
-
|
64 |
# Set up Trainer
|
65 |
trainer = Trainer(
|
66 |
model=model,
|
|
|
47 |
|
48 |
# Define training arguments
|
49 |
training_args = TrainingArguments(
|
50 |
+
output_dir="/tmp/results", # Use /tmp/ to avoid permission errors
|
51 |
+
per_device_train_batch_size=8,
|
|
|
|
|
|
|
52 |
per_device_eval_batch_size=8,
|
53 |
+
evaluation_strategy="steps",
|
54 |
+
save_steps=500,
|
55 |
+
eval_steps=500,
|
56 |
+
logging_dir="/tmp/logs", # Avoid writing to restricted directories
|
57 |
+
logging_steps=100,
|
58 |
+
save_total_limit=2,
|
59 |
fp16=True
|
60 |
)
|
|
|
|
|
61 |
# Set up Trainer
|
62 |
trainer = Trainer(
|
63 |
model=model,
|