Spaces:
Sleeping
Sleeping
File size: 6,094 Bytes
f2ca68f 9587045 f2ca68f 935a747 9587045 f2ca68f 9587045 f2ca68f c17d729 9587045 c17d729 9587045 26d55ba 9587045 c17d729 9587045 c17d729 107b2a4 9587045 c17d729 9587045 26d55ba 9587045 c17d729 935a747 9587045 c17d729 935a747 9587045 c17d729 9587045 935a747 9587045 935a747 9587045 935a747 9587045 c17d729 9587045 c17d729 ec1fd1e 9587045 c17d729 9587045 c17d729 9587045 26d55ba c17d729 9587045 ec1fd1e 9587045 ec1fd1e 9587045 c17d729 ec1fd1e 9587045 f2ca68f 9587045 f2ca68f 935a747 9587045 c17d729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import models
import pandas as pd
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset
from sklearn.preprocessing import LabelEncoder
# Load dataset
dataset = load_dataset('thefcraft/civitai-stable-diffusion-337k', split='train[:10000]')
# Text preprocessing function with None handling
def preprocess_text(text, max_length=100):
# Handle None or empty text
if text is None or not isinstance(text, str):
text = ""
# Convert text to lowercase and split into words
words = text.lower().split()
# Truncate or pad to max_length
if len(words) > max_length:
words = words[:max_length]
else:
words.extend([''] * (max_length - len(words)))
return words
class CustomDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
# Filter out None values from Model column
valid_indices = [i for i, model in enumerate(dataset['Model']) if model is not None]
self.valid_dataset = dataset.select(valid_indices)
self.label_encoder = LabelEncoder()
self.labels = self.label_encoder.fit_transform(self.valid_dataset['Model'])
# Create vocabulary from all prompts
self.vocab = set()
for item in self.valid_dataset['prompt']:
try:
self.vocab.update(preprocess_text(item))
except Exception as e:
print(f"Error processing prompt: {e}")
continue
# Remove empty string from vocabulary if present
self.vocab.discard('')
self.vocab = list(self.vocab)
self.word_to_idx = {word: idx for idx, word in enumerate(self.vocab)}
def __len__(self):
return len(self.valid_dataset)
def text_to_vector(self, text):
try:
words = preprocess_text(text)
vector = torch.zeros(len(self.vocab))
for word in words:
if word in self.word_to_idx:
vector[self.word_to_idx[word]] += 1
return vector
except Exception as e:
print(f"Error converting text to vector: {e}")
return torch.zeros(len(self.vocab))
def __getitem__(self, idx):
try:
image = self.transform(self.valid_dataset[idx]['image'])
text_vector = self.text_to_vector(self.valid_dataset[idx]['prompt'])
label = self.labels[idx]
return image, text_vector, label
except Exception as e:
print(f"Error getting item at index {idx}: {e}")
# Return zero tensors as fallback
return (torch.zeros((3, 224, 224)),
torch.zeros(len(self.vocab)),
0)
# Define CNN for image processing
class ImageModel(nn.Module):
def __init__(self):
super(ImageModel, self).__init__()
self.model = models.resnet18(pretrained=True)
self.model.fc = nn.Linear(self.model.fc.in_features, 512)
def forward(self, x):
return self.model(x)
# Define MLP for text processing
class TextMLP(nn.Module):
def __init__(self, vocab_size):
super(TextMLP, self).__init__()
self.layers = nn.Sequential(
nn.Linear(vocab_size, 1024),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 512)
)
def forward(self, x):
return self.layers(x)
# Combined model
class CombinedModel(nn.Module):
def __init__(self, vocab_size, num_classes):
super(CombinedModel, self).__init__()
self.image_model = ImageModel()
self.text_model = TextMLP(vocab_size)
self.fc = nn.Linear(1024, num_classes)
def forward(self, image, text):
image_features = self.image_model(image)
text_features = self.text_model(text)
combined = torch.cat((image_features, text_features), dim=1)
return self.fc(combined)
# Create dataset instance
print("Creating dataset...")
custom_dataset = CustomDataset(dataset)
print(f"Vocabulary size: {len(custom_dataset.vocab)}")
print(f"Number of valid samples: {len(custom_dataset)}")
# Create model
num_classes = len(custom_dataset.label_encoder.classes_)
model = CombinedModel(len(custom_dataset.vocab), num_classes)
def get_recommendations(image):
model.eval()
with torch.no_grad():
# Process input image
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
image_tensor = transform(image).unsqueeze(0)
# Create dummy text vector
dummy_text = torch.zeros((1, len(custom_dataset.vocab)))
# Get model output
output = model(image_tensor, dummy_text)
_, indices = torch.topk(output, 5)
# Get recommended images and their information
recommendations = []
for idx in indices[0]:
try:
recommended_image = custom_dataset.valid_dataset[idx.item()]['image']
model_name = custom_dataset.valid_dataset[idx.item()]['Model']
recommendations.append((recommended_image, f"{model_name}"))
except Exception as e:
print(f"Error getting recommendation for index {idx}: {e}")
continue
return recommendations
# Set up Gradio interface
interface = gr.Interface(
fn=get_recommendations,
inputs=gr.Image(type="pil"),
outputs=gr.Gallery(label="Recommended Images"),
title="Image Recommendation System",
description="Upload an image and get similar images with their model names."
)
# Launch the app
if __name__ == "__main__":
interface.launch() |