Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,45 +6,58 @@ import pandas as pd
|
|
6 |
from datasets import load_dataset
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
import numpy as np
|
|
|
|
|
9 |
|
10 |
# Load Florence-2 model and processor
|
11 |
model_name = "microsoft/Florence-2-base"
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
14 |
|
|
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
model_name,
|
17 |
torch_dtype=torch_dtype,
|
18 |
-
trust_remote_code=True
|
|
|
19 |
).to(device)
|
20 |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
21 |
|
22 |
# Load CivitAI dataset (limited to 1000 samples)
|
|
|
23 |
dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k", split="train[:1000]")
|
24 |
df = pd.DataFrame(dataset)
|
|
|
25 |
|
26 |
# Create cache for embeddings to improve performance
|
27 |
text_embedding_cache = {}
|
28 |
|
29 |
def get_image_embedding(image):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def get_text_embedding(text):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
# Pre-compute text embeddings for all prompts in the dataset
|
48 |
def precompute_embeddings():
|
49 |
print("Pre-computing text embeddings...")
|
50 |
for idx, row in df.iterrows():
|
@@ -55,21 +68,21 @@ def precompute_embeddings():
|
|
55 |
print("Finished pre-computing embeddings")
|
56 |
|
57 |
def find_similar_images(uploaded_image, top_k=5):
|
58 |
-
# Get embedding for uploaded image
|
59 |
query_embedding = get_image_embedding(uploaded_image)
|
|
|
|
|
60 |
|
61 |
-
# Calculate similarities with dataset
|
62 |
similarities = []
|
63 |
for idx, row in df.iterrows():
|
64 |
prompt_embedding = get_text_embedding(row['prompt'])
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
# Sort by similarity and get top k results
|
73 |
sorted_results = sorted(similarities, key=lambda x: x['similarity'], reverse=True)
|
74 |
top_models = []
|
75 |
top_prompts = []
|
@@ -94,21 +107,28 @@ def process_image(input_image):
|
|
94 |
if input_image is None:
|
95 |
return "Please upload an image.", "Please upload an image."
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
|
110 |
# Pre-compute embeddings when starting the application
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
# Create Gradio interface
|
114 |
iface = gr.Interface(
|
|
|
6 |
from datasets import load_dataset
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
import numpy as np
|
9 |
+
import warnings
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
|
12 |
# Load Florence-2 model and processor
|
13 |
model_name = "microsoft/Florence-2-base"
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
|
17 |
+
# Modify model loading to disable flash attention
|
18 |
model = AutoModelForCausalLM.from_pretrained(
|
19 |
model_name,
|
20 |
torch_dtype=torch_dtype,
|
21 |
+
trust_remote_code=True,
|
22 |
+
use_flash_attention=False # Disable flash attention
|
23 |
).to(device)
|
24 |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
25 |
|
26 |
# Load CivitAI dataset (limited to 1000 samples)
|
27 |
+
print("Loading dataset...")
|
28 |
dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k", split="train[:1000]")
|
29 |
df = pd.DataFrame(dataset)
|
30 |
+
print("Dataset loaded successfully!")
|
31 |
|
32 |
# Create cache for embeddings to improve performance
|
33 |
text_embedding_cache = {}
|
34 |
|
35 |
def get_image_embedding(image):
|
36 |
+
try:
|
37 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch_dtype)
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model.get_image_features(**inputs)
|
40 |
+
return outputs.cpu().numpy()
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error in get_image_embedding: {str(e)}")
|
43 |
+
return None
|
44 |
|
45 |
def get_text_embedding(text):
|
46 |
+
try:
|
47 |
+
if text in text_embedding_cache:
|
48 |
+
return text_embedding_cache[text]
|
49 |
+
|
50 |
+
inputs = processor(text=text, return_tensors="pt").to(device, torch_dtype)
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model.get_text_features(**inputs)
|
53 |
+
|
54 |
+
embedding = outputs.cpu().numpy()
|
55 |
+
text_embedding_cache[text] = embedding
|
56 |
+
return embedding
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error in get_text_embedding: {str(e)}")
|
59 |
+
return None
|
60 |
|
|
|
61 |
def precompute_embeddings():
|
62 |
print("Pre-computing text embeddings...")
|
63 |
for idx, row in df.iterrows():
|
|
|
68 |
print("Finished pre-computing embeddings")
|
69 |
|
70 |
def find_similar_images(uploaded_image, top_k=5):
|
|
|
71 |
query_embedding = get_image_embedding(uploaded_image)
|
72 |
+
if query_embedding is None:
|
73 |
+
return [], []
|
74 |
|
|
|
75 |
similarities = []
|
76 |
for idx, row in df.iterrows():
|
77 |
prompt_embedding = get_text_embedding(row['prompt'])
|
78 |
+
if prompt_embedding is not None:
|
79 |
+
similarity = cosine_similarity(query_embedding, prompt_embedding)[0][0]
|
80 |
+
similarities.append({
|
81 |
+
'similarity': similarity,
|
82 |
+
'model': row['Model'],
|
83 |
+
'prompt': row['prompt']
|
84 |
+
})
|
85 |
|
|
|
86 |
sorted_results = sorted(similarities, key=lambda x: x['similarity'], reverse=True)
|
87 |
top_models = []
|
88 |
top_prompts = []
|
|
|
107 |
if input_image is None:
|
108 |
return "Please upload an image.", "Please upload an image."
|
109 |
|
110 |
+
try:
|
111 |
+
if not isinstance(input_image, Image.Image):
|
112 |
+
input_image = Image.fromarray(input_image)
|
113 |
+
|
114 |
+
recommended_models, recommended_prompts = find_similar_images(input_image)
|
115 |
+
|
116 |
+
if not recommended_models or not recommended_prompts:
|
117 |
+
return "Error processing image.", "Error processing image."
|
118 |
+
|
119 |
+
models_text = "Recommended Models:\n" + "\n".join([f"{i+1}. {model}" for i, model in enumerate(recommended_models)])
|
120 |
+
prompts_text = "Recommended Prompts:\n" + "\n".join([f"{i+1}. {prompt}" for i, prompt in enumerate(recommended_prompts)])
|
121 |
+
|
122 |
+
return models_text, prompts_text
|
123 |
+
except Exception as e:
|
124 |
+
print(f"Error in process_image: {str(e)}")
|
125 |
+
return "Error processing image.", "Error processing image."
|
126 |
|
127 |
# Pre-compute embeddings when starting the application
|
128 |
+
try:
|
129 |
+
precompute_embeddings()
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error in precompute_embeddings: {str(e)}")
|
132 |
|
133 |
# Create Gradio interface
|
134 |
iface = gr.Interface(
|