metadata
title: README
emoji: π
colorFrom: gray
colorTo: pink
sdk: static
pinned: false
Whisper Fine-Tuning Event π€
Whisper Fine-Tuning Event
https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/README.md
Sign in to Lambdalabs
https://cloud.lambdalabs.com/instances
and create a new instance with a A100 GPU without disk storage
Log in to Huggingface
pip install git+https://github.com/huggingface/transformers
git config --global credential.helper store
huggingface-cli login
Provide Huggingface access token for your account
https://huggingface.co./settings/tokens
Clone Whisper train project for run scripts
git clone https://huggingface.co./bjelkenhed/whisper-train-ts
Install requirements and python libraries
sudo apt-get install git-lfs
pip install --pre --force-reinstall torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu117
pip install -r whisper-medium/requirements.txt
python -c "import torch; print(torch.cuda.is_available())"
Create and clone Huggingface model repository
Create a new model named whisper-small-sv (change to your selected name in following sections)
huggingface-cli repo create whisper-medium-ts-sv
git clone https://huggingface.co./bjelkenhed/whisper-medium-ts-sv
cd whisper-medium-ts-sv
git lfs install
Copy runscripts to model
cp ~/whisper-small/run.sh ~/whisper-small/run_speech_recognition_seq2seq_streaming.py .
or
cp ~/whisper-medium/run.sh ~/whisper-medium/run_speech_recognition_seq2seq_streaming.py .
or
cp ~/whisper-large/run.sh ~/whisper-large/run_speech_recognition_seq2seq_streaming.py .
Start training
tmux new -s mysession
bash run.sh
To resume session
tmux a -t mysession