File size: 10,176 Bytes
9dd40a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
import time

# Wide mode
st.set_page_config(layout="wide")

# Initialize parameters
params = {
    'Beds': 100,
    'Doctors': 50,
    'Nurses': 100,
    'Ventilators': 20,
    'ICU_Beds': 20,
    'Surgical_Suites': 5,
    'Emergency_Room_Beds': 10,
    'Pharmacy_Staff': 5,
    'Lab_Staff': 5,
    'Radiology_Staff': 5,
    'Patient_Admissions': 50,
    'Patient_Discharges': 40,
    'Average_Stay': 5,
    'ICU_Admissions': 10,
    'Surgical_Cases': 20,
    'Emergency_Room_Visits': 30,
    'Pharmacy_Requests': 50,
    'Lab_Requests': 40,
    'Radiology_Requests': 30
}

# Create a Streamlit app
st.title("Hospital Resource Allocation Simulator")

# Add a sidebar for input parameters
st.sidebar.header("Input Parameters")
for param, value in params.items():
    params[param] = st.sidebar.slider(param, 0, 200, value)

# Create a button to start the simulation
if st.sidebar.button("Start Live Simulation"):
    st.header("Live Simulation")
    st.write("Simulation started. Graphs will update every second to represent hourly changes in resource allocation.")

    # Initialize dataframes to store simulation data
    beds_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Occupied'])
    doctors_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
    nurses_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
    ventilators_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'In_Use'])
    icu_beds_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Occupied'])
    surgical_suites_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'In_Use'])
    emergency_room_beds_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Occupied'])
    pharmacy_staff_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
    lab_staff_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
    radiology_staff_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])

    # Initialize log for resource usage
    log = []

    # Generate synthetic data for training
    np.random.seed(42)
    X = pd.DataFrame(np.random.randint(0, 100, size=(100, len(params))), columns=params.keys())
    y = np.random.randint(0, 100, size=100)  # Dummy target for demonstration

    # Split data for training and testing
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # Initialize regression models
    models = {
        'Linear Regression': LinearRegression(),
        'Random Forest Regression': RandomForestRegressor(),
        'SVR': SVR(),
        'Decision Tree Regression': DecisionTreeRegressor(),
        'Gradient Boosting Regression': GradientBoostingRegressor()
    }

    # Predict values for each parameter using each model
    predicted_values = {}
    for name, model in models.items():
        predictions = model.fit(X_train, y_train).predict(X_test)
        predicted_values[name] = predictions

    # Display predicted values
    # st.subheader("Predicted Parameter Values")
    # predicted_df = pd.DataFrame(predicted_values, index=X_test.index)
    # st.write(predicted_df)

    # Create a grid layout for the graphs
    col1, col2, col3 = st.columns(3)

    with col1:
        st.subheader("Beds Availability")
        beds_chart = st.line_chart(beds_df)

    with col2:
        st.subheader("Doctors Availability")
        doctors_chart = st.line_chart(doctors_df)

    with col3:
        st.subheader("Nurses Availability")
        nurses_chart = st.line_chart(nurses_df)

    col4, col5, col6 = st.columns(3)

    with col4:
        st.subheader("Ventilators Availability")
        ventilators_chart = st.line_chart(ventilators_df)

    with col5:
        st.subheader("ICU Beds Availability")
        icu_beds_chart = st.line_chart(icu_beds_df)

    with col6:
        st.subheader("Surgical Suites Availability")
        surgical_suites_chart = st.line_chart(surgical_suites_df)

    col7, col8, col9 = st.columns(3)

    with col7:
        st.subheader("Emergency Room Beds Availability")
        emergency_room_beds_chart = st.line_chart(emergency_room_beds_df)

    with col8:
        st.subheader("Pharmacy Staff Availability")
        pharmacy_staff_chart = st.line_chart(pharmacy_staff_df)

    with col9:
        st.subheader("Lab Staff Availability")
        lab_staff_chart = st.line_chart(lab_staff_df)

    col10, col11, col12 = st.columns(3)

    with col10:
        st.subheader("Radiology Staff Availability")
        radiology_staff_chart = st.line_chart(radiology_staff_df)

    # Start the simulation
    for i in range(24):
        # Simulate patient admissions and discharges
        admissions = np.random.poisson(params['Patient_Admissions'])
        discharges = np.random.poisson(params['Patient_Discharges'])

        # Update bed availability
        beds_df.iloc[i, 0] = params['Beds'] - admissions + discharges
        beds_df.iloc[i, 1] = admissions

        # Simulate doctor and nurse availability
        doctors_available = params['Doctors'] - (admissions * 0.6 + params['ICU_Admissions'] * 0.4)
        nurses_available = params['Nurses'] - (admissions * 1.4 + params['ICU_Admissions'] * 0.6)
        doctors_df.iloc[i, 0] = doctors_available
        doctors_df.iloc[i, 1] = admissions * 0.25
        nurses_df.iloc[i, 0] = nurses_available
        nurses_df.iloc[i, 1] = admissions * 0.8

        # Simulate ventilator availability
        ventilators_available = params['Ventilators'] - (admissions * 0.1 + params['ICU_Admissions'] * 0.2)
        ventilators_df.iloc[i, 0] = ventilators_available
        ventilators_df.iloc[i, 1] = admissions * 0.05

        # Simulate ICU bed availability
        icu_beds_available = params['ICU_Beds'] - (admissions * 0.1 + params['ICU_Admissions'] * 0.5)
        icu_beds_df.iloc[i, 0] = icu_beds_available
        icu_beds_df.iloc[i, 1] = admissions * 0.08

        # Simulate surgical suite availability
        surgical_suites_available = params['Surgical_Suites'] - (admissions * 0.1 + params['Surgical_Cases'] * 0.4)
        surgical_suites_df.iloc[i, 0] = surgical_suites_available
        surgical_suites_df.iloc[i, 1] = admissions * 0.05

        # Simulate emergency room bed availability
        emergency_room_beds_available = params['Emergency_Room_Beds'] - (admissions * 0.1 + params['Emergency_Room_Visits'] * 0.5)
        emergency_room_beds_df.iloc[i, 0] = emergency_room_beds_available
        emergency_room_beds_df.iloc[i, 1] = admissions * 0.1

        # Simulate pharmacy, lab, and radiology staff availability
        pharmacy_requests = params['Pharmacy_Requests'] + params['ICU_Admissions'] * 0.1 + admissions * 0.1
        lab_requests = params['Lab_Requests'] + params['ICU_Admissions'] * 0.1 + admissions * 0.1
        radiology_requests = params['Radiology_Requests'] + params['ICU_Admissions'] * 0.1 + admissions * 0.1
        
        pharmacy_staff_available = params['Pharmacy_Staff'] - pharmacy_requests * 0.1
        lab_staff_available = params['Lab_Staff'] - lab_requests * 0.1
        radiology_staff_available = params['Radiology_Staff'] - radiology_requests * 0.1
        
        pharmacy_staff_df.iloc[i, 0] = pharmacy_staff_available
        pharmacy_staff_df.iloc[i, 1] = pharmacy_requests * 0.1
        lab_staff_df.iloc[i, 0] = lab_staff_available
        lab_staff_df.iloc[i, 1] = lab_requests * 0.1
        radiology_staff_df.iloc[i, 0] = radiology_staff_available
        radiology_staff_df.iloc[i, 1] = radiology_requests * 0.1

        # Update graphs with new data
        beds_chart.line_chart(beds_df)
        doctors_chart.line_chart(doctors_df)
        nurses_chart.line_chart(nurses_df)
        ventilators_chart.line_chart(ventilators_df)
        icu_beds_chart.line_chart(icu_beds_df)
        surgical_suites_chart.line_chart(surgical_suites_df)
        emergency_room_beds_chart.line_chart(emergency_room_beds_df)
        pharmacy_staff_chart.line_chart(pharmacy_staff_df)
        lab_staff_chart.line_chart(lab_staff_df)
        radiology_staff_chart.line_chart(radiology_staff_df)

        # Log resource usage for each patient
        log.append(f"Hour {i}: Beds Available - {beds_df.iloc[i, 0]}, Beds Occupied - {beds_df.iloc[i, 1]}, Doctors Available - {doctors_df.iloc[i, 0]}, Doctors Busy - {doctors_df.iloc[i, 1]}, Nurses Available - {nurses_df.iloc[i, 0]}, Nurses Busy - {nurses_df.iloc[i, 1]}, Ventilators Available - {ventilators_df.iloc[i, 0]}, Ventilators In Use - {ventilators_df.iloc[i, 1]}, ICU Beds Available - {icu_beds_df.iloc[i, 0]}, ICU Beds Occupied - {icu_beds_df.iloc[i, 1]}, Surgical Suites Available - {surgical_suites_df.iloc[i, 0]}, Surgical Suites In Use - {surgical_suites_df.iloc[i, 1]}, Emergency Room Beds Available - {emergency_room_beds_df.iloc[i, 0]}, Emergency Room Beds Occupied - {emergency_room_beds_df.iloc[i, 1]}, Pharmacy Staff Available - {pharmacy_staff_df.iloc[i, 0]}, Pharmacy Staff Busy - {pharmacy_staff_df.iloc[i, 1]}, Lab Staff Available - {lab_staff_df.iloc[i, 0]}, Lab Staff Busy - {lab_staff_df.iloc[i, 1]}, Radiology Staff Available - {radiology_staff_df.iloc[i, 0]}, Radiology Staff Busy - {radiology_staff_df.iloc[i, 1]}")

        # Wait for 1 second before updating the simulation
        time.sleep(1)

    # Display the resource usage log
    st.subheader("Resource Usage Log")
    for entry in log:
        st.write(entry)