ayush-thakur02 commited on
Commit
9dd40a1
·
verified ·
1 Parent(s): a62c7e1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +219 -0
app.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from sklearn.linear_model import LinearRegression
5
+ from sklearn.ensemble import RandomForestRegressor
6
+ from sklearn.svm import SVR
7
+ from sklearn.tree import DecisionTreeRegressor
8
+ from sklearn.ensemble import GradientBoostingRegressor
9
+ from sklearn.model_selection import train_test_split
10
+ import time
11
+
12
+ # Wide mode
13
+ st.set_page_config(layout="wide")
14
+
15
+ # Initialize parameters
16
+ params = {
17
+ 'Beds': 100,
18
+ 'Doctors': 50,
19
+ 'Nurses': 100,
20
+ 'Ventilators': 20,
21
+ 'ICU_Beds': 20,
22
+ 'Surgical_Suites': 5,
23
+ 'Emergency_Room_Beds': 10,
24
+ 'Pharmacy_Staff': 5,
25
+ 'Lab_Staff': 5,
26
+ 'Radiology_Staff': 5,
27
+ 'Patient_Admissions': 50,
28
+ 'Patient_Discharges': 40,
29
+ 'Average_Stay': 5,
30
+ 'ICU_Admissions': 10,
31
+ 'Surgical_Cases': 20,
32
+ 'Emergency_Room_Visits': 30,
33
+ 'Pharmacy_Requests': 50,
34
+ 'Lab_Requests': 40,
35
+ 'Radiology_Requests': 30
36
+ }
37
+
38
+ # Create a Streamlit app
39
+ st.title("Hospital Resource Allocation Simulator")
40
+
41
+ # Add a sidebar for input parameters
42
+ st.sidebar.header("Input Parameters")
43
+ for param, value in params.items():
44
+ params[param] = st.sidebar.slider(param, 0, 200, value)
45
+
46
+ # Create a button to start the simulation
47
+ if st.sidebar.button("Start Live Simulation"):
48
+ st.header("Live Simulation")
49
+ st.write("Simulation started. Graphs will update every second to represent hourly changes in resource allocation.")
50
+
51
+ # Initialize dataframes to store simulation data
52
+ beds_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Occupied'])
53
+ doctors_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
54
+ nurses_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
55
+ ventilators_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'In_Use'])
56
+ icu_beds_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Occupied'])
57
+ surgical_suites_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'In_Use'])
58
+ emergency_room_beds_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Occupied'])
59
+ pharmacy_staff_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
60
+ lab_staff_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
61
+ radiology_staff_df = pd.DataFrame(index=pd.date_range(start='2022-01-01', periods=24, freq='H'), columns=['Available', 'Busy'])
62
+
63
+ # Initialize log for resource usage
64
+ log = []
65
+
66
+ # Generate synthetic data for training
67
+ np.random.seed(42)
68
+ X = pd.DataFrame(np.random.randint(0, 100, size=(100, len(params))), columns=params.keys())
69
+ y = np.random.randint(0, 100, size=100) # Dummy target for demonstration
70
+
71
+ # Split data for training and testing
72
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
73
+
74
+ # Initialize regression models
75
+ models = {
76
+ 'Linear Regression': LinearRegression(),
77
+ 'Random Forest Regression': RandomForestRegressor(),
78
+ 'SVR': SVR(),
79
+ 'Decision Tree Regression': DecisionTreeRegressor(),
80
+ 'Gradient Boosting Regression': GradientBoostingRegressor()
81
+ }
82
+
83
+ # Predict values for each parameter using each model
84
+ predicted_values = {}
85
+ for name, model in models.items():
86
+ predictions = model.fit(X_train, y_train).predict(X_test)
87
+ predicted_values[name] = predictions
88
+
89
+ # Display predicted values
90
+ # st.subheader("Predicted Parameter Values")
91
+ # predicted_df = pd.DataFrame(predicted_values, index=X_test.index)
92
+ # st.write(predicted_df)
93
+
94
+ # Create a grid layout for the graphs
95
+ col1, col2, col3 = st.columns(3)
96
+
97
+ with col1:
98
+ st.subheader("Beds Availability")
99
+ beds_chart = st.line_chart(beds_df)
100
+
101
+ with col2:
102
+ st.subheader("Doctors Availability")
103
+ doctors_chart = st.line_chart(doctors_df)
104
+
105
+ with col3:
106
+ st.subheader("Nurses Availability")
107
+ nurses_chart = st.line_chart(nurses_df)
108
+
109
+ col4, col5, col6 = st.columns(3)
110
+
111
+ with col4:
112
+ st.subheader("Ventilators Availability")
113
+ ventilators_chart = st.line_chart(ventilators_df)
114
+
115
+ with col5:
116
+ st.subheader("ICU Beds Availability")
117
+ icu_beds_chart = st.line_chart(icu_beds_df)
118
+
119
+ with col6:
120
+ st.subheader("Surgical Suites Availability")
121
+ surgical_suites_chart = st.line_chart(surgical_suites_df)
122
+
123
+ col7, col8, col9 = st.columns(3)
124
+
125
+ with col7:
126
+ st.subheader("Emergency Room Beds Availability")
127
+ emergency_room_beds_chart = st.line_chart(emergency_room_beds_df)
128
+
129
+ with col8:
130
+ st.subheader("Pharmacy Staff Availability")
131
+ pharmacy_staff_chart = st.line_chart(pharmacy_staff_df)
132
+
133
+ with col9:
134
+ st.subheader("Lab Staff Availability")
135
+ lab_staff_chart = st.line_chart(lab_staff_df)
136
+
137
+ col10, col11, col12 = st.columns(3)
138
+
139
+ with col10:
140
+ st.subheader("Radiology Staff Availability")
141
+ radiology_staff_chart = st.line_chart(radiology_staff_df)
142
+
143
+ # Start the simulation
144
+ for i in range(24):
145
+ # Simulate patient admissions and discharges
146
+ admissions = np.random.poisson(params['Patient_Admissions'])
147
+ discharges = np.random.poisson(params['Patient_Discharges'])
148
+
149
+ # Update bed availability
150
+ beds_df.iloc[i, 0] = params['Beds'] - admissions + discharges
151
+ beds_df.iloc[i, 1] = admissions
152
+
153
+ # Simulate doctor and nurse availability
154
+ doctors_available = params['Doctors'] - (admissions * 0.6 + params['ICU_Admissions'] * 0.4)
155
+ nurses_available = params['Nurses'] - (admissions * 1.4 + params['ICU_Admissions'] * 0.6)
156
+ doctors_df.iloc[i, 0] = doctors_available
157
+ doctors_df.iloc[i, 1] = admissions * 0.25
158
+ nurses_df.iloc[i, 0] = nurses_available
159
+ nurses_df.iloc[i, 1] = admissions * 0.8
160
+
161
+ # Simulate ventilator availability
162
+ ventilators_available = params['Ventilators'] - (admissions * 0.1 + params['ICU_Admissions'] * 0.2)
163
+ ventilators_df.iloc[i, 0] = ventilators_available
164
+ ventilators_df.iloc[i, 1] = admissions * 0.05
165
+
166
+ # Simulate ICU bed availability
167
+ icu_beds_available = params['ICU_Beds'] - (admissions * 0.1 + params['ICU_Admissions'] * 0.5)
168
+ icu_beds_df.iloc[i, 0] = icu_beds_available
169
+ icu_beds_df.iloc[i, 1] = admissions * 0.08
170
+
171
+ # Simulate surgical suite availability
172
+ surgical_suites_available = params['Surgical_Suites'] - (admissions * 0.1 + params['Surgical_Cases'] * 0.4)
173
+ surgical_suites_df.iloc[i, 0] = surgical_suites_available
174
+ surgical_suites_df.iloc[i, 1] = admissions * 0.05
175
+
176
+ # Simulate emergency room bed availability
177
+ emergency_room_beds_available = params['Emergency_Room_Beds'] - (admissions * 0.1 + params['Emergency_Room_Visits'] * 0.5)
178
+ emergency_room_beds_df.iloc[i, 0] = emergency_room_beds_available
179
+ emergency_room_beds_df.iloc[i, 1] = admissions * 0.1
180
+
181
+ # Simulate pharmacy, lab, and radiology staff availability
182
+ pharmacy_requests = params['Pharmacy_Requests'] + params['ICU_Admissions'] * 0.1 + admissions * 0.1
183
+ lab_requests = params['Lab_Requests'] + params['ICU_Admissions'] * 0.1 + admissions * 0.1
184
+ radiology_requests = params['Radiology_Requests'] + params['ICU_Admissions'] * 0.1 + admissions * 0.1
185
+
186
+ pharmacy_staff_available = params['Pharmacy_Staff'] - pharmacy_requests * 0.1
187
+ lab_staff_available = params['Lab_Staff'] - lab_requests * 0.1
188
+ radiology_staff_available = params['Radiology_Staff'] - radiology_requests * 0.1
189
+
190
+ pharmacy_staff_df.iloc[i, 0] = pharmacy_staff_available
191
+ pharmacy_staff_df.iloc[i, 1] = pharmacy_requests * 0.1
192
+ lab_staff_df.iloc[i, 0] = lab_staff_available
193
+ lab_staff_df.iloc[i, 1] = lab_requests * 0.1
194
+ radiology_staff_df.iloc[i, 0] = radiology_staff_available
195
+ radiology_staff_df.iloc[i, 1] = radiology_requests * 0.1
196
+
197
+ # Update graphs with new data
198
+ beds_chart.line_chart(beds_df)
199
+ doctors_chart.line_chart(doctors_df)
200
+ nurses_chart.line_chart(nurses_df)
201
+ ventilators_chart.line_chart(ventilators_df)
202
+ icu_beds_chart.line_chart(icu_beds_df)
203
+ surgical_suites_chart.line_chart(surgical_suites_df)
204
+ emergency_room_beds_chart.line_chart(emergency_room_beds_df)
205
+ pharmacy_staff_chart.line_chart(pharmacy_staff_df)
206
+ lab_staff_chart.line_chart(lab_staff_df)
207
+ radiology_staff_chart.line_chart(radiology_staff_df)
208
+
209
+ # Log resource usage for each patient
210
+ log.append(f"Hour {i}: Beds Available - {beds_df.iloc[i, 0]}, Beds Occupied - {beds_df.iloc[i, 1]}, Doctors Available - {doctors_df.iloc[i, 0]}, Doctors Busy - {doctors_df.iloc[i, 1]}, Nurses Available - {nurses_df.iloc[i, 0]}, Nurses Busy - {nurses_df.iloc[i, 1]}, Ventilators Available - {ventilators_df.iloc[i, 0]}, Ventilators In Use - {ventilators_df.iloc[i, 1]}, ICU Beds Available - {icu_beds_df.iloc[i, 0]}, ICU Beds Occupied - {icu_beds_df.iloc[i, 1]}, Surgical Suites Available - {surgical_suites_df.iloc[i, 0]}, Surgical Suites In Use - {surgical_suites_df.iloc[i, 1]}, Emergency Room Beds Available - {emergency_room_beds_df.iloc[i, 0]}, Emergency Room Beds Occupied - {emergency_room_beds_df.iloc[i, 1]}, Pharmacy Staff Available - {pharmacy_staff_df.iloc[i, 0]}, Pharmacy Staff Busy - {pharmacy_staff_df.iloc[i, 1]}, Lab Staff Available - {lab_staff_df.iloc[i, 0]}, Lab Staff Busy - {lab_staff_df.iloc[i, 1]}, Radiology Staff Available - {radiology_staff_df.iloc[i, 0]}, Radiology Staff Busy - {radiology_staff_df.iloc[i, 1]}")
211
+
212
+ # Wait for 1 second before updating the simulation
213
+ time.sleep(1)
214
+
215
+ # Display the resource usage log
216
+ st.subheader("Resource Usage Log")
217
+ for entry in log:
218
+ st.write(entry)
219
+