Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import re | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | |
import torch | |
import json | |
LEAN4_DEFAULT_HEADER = ( | |
"import Mathlib\n" | |
"import Aesop\n\n" | |
"set_option maxHeartbeats 0\n\n" | |
"open BigOperators Real Nat Topology Rat\n" | |
) | |
title = """🙋🏻♂️Welcome to🌟Tonic's🔮Goedel Prover📉 | |
You can build with this endpoint using🔮Goedel-Prover-SFT📉 available here : [Goedel-LM/Goedel-Prover-SFT](https://huggingface.co./Goedel-LM/Goedel-Prover-SFT).""" | |
def format_prompt(formal_statement, informal_prefix=""): | |
"""Format the input according to the Lean4 structure""" | |
return ( | |
f"Complete the following Lean 4 code with explanatory comments preceding each line of code:\n\n" | |
f"```lean4\n" | |
f"{LEAN4_DEFAULT_HEADER}\n" | |
f"{informal_prefix}\n" | |
f"{formal_statement}" | |
) | |
def extract_code(response): | |
"""Extract code between lean4 code blocks and the model's output""" | |
try: | |
# Find the last occurrence of ```lean4 and extract everything until the last ``` | |
start_idx = response.rfind("```lean4") | |
if start_idx == -1: | |
return response.strip() | |
# Get content after ```lean4 | |
content = response[start_idx + 7:] | |
# Find the last closing ``` | |
end_idx = content.rfind("```") | |
if end_idx != -1: | |
content = content[:end_idx] | |
# Clean up the content | |
lines = content.split('\n') | |
cleaned_lines = [] | |
for line in lines: | |
# Skip empty lines at start | |
if not cleaned_lines and not line.strip(): | |
continue | |
# Skip "Complete the following" lines | |
if "Complete the following" in line: | |
continue | |
cleaned_lines.append(line) | |
return '\n'.join(cleaned_lines) | |
except Exception as e: | |
print(f"Error in extract_code: {str(e)}") | |
return "Error processing code" | |
# Example problems | |
unimath1 = """Goal: | |
X : UU | |
Y : UU | |
P : UU | |
xp : (X → P) → P | |
yp : (Y → P) → P | |
X0 : X × Y → P | |
x : X | |
============================ | |
(Y → P)""" | |
unimath2 = """Goal: | |
R : ring M : module R | |
============================ | |
(islinear (idfun M))""" | |
unimath3 = """Goal: | |
X : UU i : nat b : hProptoType (i < S i) x : Vector X (S i) r : i = i | |
============================ | |
(pr1 lastelement = pr1 (i,, b))""" | |
unimath4 = """Goal: | |
X : dcpo CX : continuous_dcpo_struct X x : pr1hSet X y : pr1hSet X | |
============================ | |
(x ⊑ y ≃ (∀ i : approximating_family CX x, approximating_family CX x i ⊑ y))""" | |
additional_info_prompt = "/-Explain using mathematics-/\n" | |
examples = [ | |
[unimath1, additional_info_prompt, 2500], | |
[unimath2, additional_info_prompt, 2500], | |
[unimath3, additional_info_prompt, 2500], | |
[unimath4, additional_info_prompt, 2500] | |
] | |
model_name = "Goedel-LM/Goedel-Prover-SFT" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") | |
# Set generation config | |
model.generation_config = GenerationConfig.from_pretrained(model_name) | |
model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
model.generation_config.bos_token_id = 100000 | |
model.generation_config.eos_token_id = 100001 | |
model.generation_config.do_sample = True | |
model.generation_config.temperature = 1.0 | |
model.generation_config.top_p = 0.95 | |
def solve_math_problem(question, informal_prefix, max_tokens): | |
# Format the prompt using Lean4 structure | |
prompt = format_prompt(question, informal_prefix) | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
attention_mask = torch.ones_like(input_ids) | |
outputs = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
max_length=max_tokens + input_ids.shape[1], | |
pad_token_id=model.generation_config.pad_token_id, | |
temperature=1.0, | |
top_p=0.95, | |
) | |
result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract the full code from the response | |
full_code = extract_code(prompt + result) | |
# Create output dictionary similar to reference code | |
output_data = { | |
"model_input": prompt, | |
"model_output": result, | |
"full_code": full_code | |
} | |
return json.dumps(output_data, indent=2), full_code | |
def main(): | |
iface = gr.Interface( | |
title="🙋🏻♂️Welcome to🌟Tonic's🔮Goedel Prover📉", | |
description="""You can build with this endpoint using🔮Goedel-Prover-SFT📉 available here : [Goedel-LM/Goedel-Prover-SFT](https://huggingface.co./Goedel-LM/Goedel-Prover-SFT). We're using 🤖[introspector/unimath](https://huggingface.co./datasets/introspector/unimath) for cool examples, check it out below ! The demo is still a work in progress and we're looking forward to build downstream tasks that showcase outstanding mathematical reasoning. Have any ideas ? join us below ! | |
You can also use 🔮Goedel Prover📉 by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co./spaces/Tonic/Math?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [Join us on Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co./TeamTonic) & [MultiTransformer](https://huggingface.co./MultiTransformer) Math with [introspector](https://huggingface.co./introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 | |
""", | |
fn=solve_math_problem, | |
outputs=[ | |
gr.JSON(label="Full Output"), | |
gr.Code(label="Extracted Lean4 Code", language="python") | |
], | |
inputs=[ | |
gr.Textbox(label="🤔Enter your Lean4 formal statement", lines=7), | |
gr.Textbox(value=additional_info_prompt, label="🪜Optional informal prefix"), | |
gr.Slider(minimum=150, maximum=4086, value=2500, label="🪙Max Tokens") | |
], | |
examples=examples | |
) | |
iface.launch() | |
if __name__ == "__main__": | |
main() | |