Math / app.py
Tonic's picture
Update app.py
946d1a8 verified
import spaces
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import json
LEAN4_DEFAULT_HEADER = (
"import Mathlib\n"
"import Aesop\n\n"
"set_option maxHeartbeats 0\n\n"
"open BigOperators Real Nat Topology Rat\n"
)
title = """🙋🏻‍♂️Welcome to🌟Tonic's🔮Goedel Prover📉
You can build with this endpoint using🔮Goedel-Prover-SFT📉 available here : [Goedel-LM/Goedel-Prover-SFT](https://huggingface.co./Goedel-LM/Goedel-Prover-SFT)."""
def format_prompt(formal_statement, informal_prefix=""):
"""Format the input according to the Lean4 structure"""
return (
f"Complete the following Lean 4 code with explanatory comments preceding each line of code:\n\n"
f"```lean4\n"
f"{LEAN4_DEFAULT_HEADER}\n"
f"{informal_prefix}\n"
f"{formal_statement}"
)
def extract_code(response):
"""Extract code between lean4 code blocks and the model's output"""
try:
# Find the last occurrence of ```lean4 and extract everything until the last ```
start_idx = response.rfind("```lean4")
if start_idx == -1:
return response.strip()
# Get content after ```lean4
content = response[start_idx + 7:]
# Find the last closing ```
end_idx = content.rfind("```")
if end_idx != -1:
content = content[:end_idx]
# Clean up the content
lines = content.split('\n')
cleaned_lines = []
for line in lines:
# Skip empty lines at start
if not cleaned_lines and not line.strip():
continue
# Skip "Complete the following" lines
if "Complete the following" in line:
continue
cleaned_lines.append(line)
return '\n'.join(cleaned_lines)
except Exception as e:
print(f"Error in extract_code: {str(e)}")
return "Error processing code"
# Example problems
unimath1 = """Goal:
X : UU
Y : UU
P : UU
xp : (X → P) → P
yp : (Y → P) → P
X0 : X × Y → P
x : X
============================
(Y → P)"""
unimath2 = """Goal:
R : ring M : module R
============================
(islinear (idfun M))"""
unimath3 = """Goal:
X : UU i : nat b : hProptoType (i < S i) x : Vector X (S i) r : i = i
============================
(pr1 lastelement = pr1 (i,, b))"""
unimath4 = """Goal:
X : dcpo CX : continuous_dcpo_struct X x : pr1hSet X y : pr1hSet X
============================
(x ⊑ y ≃ (∀ i : approximating_family CX x, approximating_family CX x i ⊑ y))"""
additional_info_prompt = "/-Explain using mathematics-/\n"
examples = [
[unimath1, additional_info_prompt, 2500],
[unimath2, additional_info_prompt, 2500],
[unimath3, additional_info_prompt, 2500],
[unimath4, additional_info_prompt, 2500]
]
model_name = "Goedel-LM/Goedel-Prover-SFT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
# Set generation config
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.generation_config.bos_token_id = 100000
model.generation_config.eos_token_id = 100001
model.generation_config.do_sample = True
model.generation_config.temperature = 1.0
model.generation_config.top_p = 0.95
@spaces.GPU
def solve_math_problem(question, informal_prefix, max_tokens):
# Format the prompt using Lean4 structure
prompt = format_prompt(question, informal_prefix)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
attention_mask = torch.ones_like(input_ids)
outputs = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_tokens + input_ids.shape[1],
pad_token_id=model.generation_config.pad_token_id,
temperature=1.0,
top_p=0.95,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the full code from the response
full_code = extract_code(prompt + result)
# Create output dictionary similar to reference code
output_data = {
"model_input": prompt,
"model_output": result,
"full_code": full_code
}
return json.dumps(output_data, indent=2), full_code
def main():
iface = gr.Interface(
title="🙋🏻‍♂️Welcome to🌟Tonic's🔮Goedel Prover📉",
description="""You can build with this endpoint using🔮Goedel-Prover-SFT📉 available here : [Goedel-LM/Goedel-Prover-SFT](https://huggingface.co./Goedel-LM/Goedel-Prover-SFT). We're using 🤖[introspector/unimath](https://huggingface.co./datasets/introspector/unimath) for cool examples, check it out below ! The demo is still a work in progress and we're looking forward to build downstream tasks that showcase outstanding mathematical reasoning. Have any ideas ? join us below !
You can also use 🔮Goedel Prover📉 by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co./spaces/Tonic/Math?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [Join us on Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co./TeamTonic) & [MultiTransformer](https://huggingface.co./MultiTransformer) Math with [introspector](https://huggingface.co./introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
""",
fn=solve_math_problem,
outputs=[
gr.JSON(label="Full Output"),
gr.Code(label="Extracted Lean4 Code", language="python")
],
inputs=[
gr.Textbox(label="🤔Enter your Lean4 formal statement", lines=7),
gr.Textbox(value=additional_info_prompt, label="🪜Optional informal prefix"),
gr.Slider(minimum=150, maximum=4086, value=2500, label="🪙Max Tokens")
],
examples=examples
)
iface.launch()
if __name__ == "__main__":
main()